Monolayer tinene presents rich absorption spectra in electric fields. There are three kinds of special structures, namely shoulders, logarithmically symmetric peaks and asymmetric peaks in the square-root form, corresponding to the optical excitations of the extreme points, saddle points and constant-energy loops. With the increasing field strength, two splitting shoulder structures, which are dominated by the parabolic bands of ${5p_z}$ orbitals, come to exist because of the spin-split energy bands. The frequency of threshold shoulder declines to zero and then linearly grows. The third shoulder at ${0.75 sim 0.85}$ eV mainly comes from (${5p_x,5p_y}$) orbitals. The former and the latter orbitals, respectively, create the saddle-point symmetric peaks near the M point, while they hybridize with one another to generate the loop-related asymmetric peaks. Tinene quite differs from graphene, silicene, and germanene. The special relationship among the multi-orbital chemical bondings, spin-orbital couplings and Coulomb potentials accounts for the feature-rich optical properties.