No Arabic abstract
We study here the precession of the spin of a test gyroscope attached to a stationary observer in the Kerr spacetime, specifically, to distinguish naked singularity (NS) from black hole (BH). It was shown recently that for gyros attached to static observers, their precession frequency became arbitrarily large in the limit of approach to the ergosurface. For gyros attached to stationary observers that move with non-zero angular velocity $Omega$, this divergence at the ergosurface can be avoided. Specifically, for such gyros, the precession frequencies diverge on the event horizon of a BH, but are finite and regular for NS everywhere except at the singularity itself. Therefore a genuine detection of the event horizon becomes possible in this case. We also show that for a near-extremal NS ($1<a_* < 1.1$), characteristic features appear in the radial profiles of the precession frequency, using which we can further distinguish a near-extremal NS from a BH, or even from NS with larger angular momentum. We then investigate the Lense-Thirring (LT) precession or nodal plane precession frequency of the accretion disk around a BH and NS to show that clear distinctions exist for these configurations in terms of radial variation features. The LT precession in equatorial circular orbits increases with approach to a BH, whereas for NS it increases, attains a peak and then decreases. Interestingly, for $a_*=1.089$, it decreases until it vanishes at a certain radius, and acquires negative values for $a_* > 1.089$ for a certain range of $r$. For $1<a_*<1.089$, a peak appears, but the LT frequency remains positive definite. There are important differences in accretion disk LT frequencies for BH and NS and since LT frequencies are intimately related to observed QPOs, these features might allow us to determine whether a given rotating compact astrophysical object is BH or NS.
We report about the possibility for interacting Kerr sources to exist in two different states - black holes or naked singularities - both states characterized by the same masses and angular momenta. Another surprising discovery reported by us is that in spite of the absence of balance between two Kerr black holes, the latter nevertheless can repel each other, which provides a good opportunity for experimental detection of the spin-spin repulsive force through the observation of astrophysical black-hole binaries.
The open question of whether a Kerr black hole can become tidally deformed or not has profound implications for fundamental physics and gravitational-wave astronomy. We consider a Kerr black hole embedded in a weak and slowly varying, but otherwise arbitrary, multipolar tidal environment. By solving the static Teukolsky equation for the gauge-invariant Weyl scalar $psi_0$, and by reconstructing the corresponding metric perturbation in an ingoing radiation gauge, for a general harmonic index $ell$, we compute the linear response of a Kerr black hole to the tidal field. This linear response vanishes identically for a Schwarzschild black hole and for an axisymmetric perturbation of a spinning black hole. For a nonaxisymmetric perturbation of a spinning black hole, however, the linear response does not vanish, and it contributes to the Geroch-Hansen multipole moments of the perturbed Kerr geometry. As an application, we compute explicitly the rotational black hole tidal Love numbers that couple the induced quadrupole moments to the quadrupolar tidal fields, to linear order in the black hole spin, and we introduce the corresponding notion of tidal Love tensor. Finally, we show that those induced quadrupole moments are closely related to the well-known physical phenomenon of tidal torquing of a spinning body interacting with a tidal gravitational environment.
The grand challenges of contemporary fundamental physics---dark matter, dark energy, vacuum energy, inflation and early universe cosmology, singularities and the hierarchy problem---all involve gravity as a key component. And of all gravitational phenomena, black holes stand out in their elegant simplicity, while harbouring some of the most remarkable predictions of General Relativity: event horizons, singularities and ergoregions. The hitherto invisible landscape of the gravitational Universe is being unveiled before our eyes: the historical direct detection of gravitational waves by the LIGO-Virgo collaboration marks the dawn of a new era of scientific exploration. Gravitational-wave astronomy will allow us to test models of black hole formation, growth and evolution, as well as models of gravitational-wave generation and propagation. It will provide evidence for event horizons and ergoregions, test the theory of General Relativity itself, and may reveal the existence of new fundamental fields. The synthesis of these results has the potential to radically reshape our understanding of the cosmos and of the laws of Nature. The purpose of this work is to present a concise, yet comprehensive overview of the state of the art in the relevant fields of research, summarize important open problems, and lay out a roadmap for future progress.
We investigate the spherical photon orbits in near-extremal Kerr spacetimes. We show that the spherical photon orbits with impact parameters in a finite range converge on the event horizon. Furthermore, we demonstrate that the Weyl curvature near the horizon does not generate the shear of a congruence of such light rays. Because of this property, a series of images produced by the light orbiting around a near-extremal Kerr black hole several times can be observable.
We study the time delay between two relativistic images due to strong gravitational lensing of the light rays caused by the Kerr and Kerr-Newman black holes. Using the known form of the deflection angle in the strong deflection limit (SDL) allows us to analytically develop the formalism for the travel time of the light from the distant source winding around the black hole several times and reaching the observer. We find that the black hole with higher mass or with spin of the extreme black hole potentially have higher time delay. The effect of the charge of the black hole enhances the time delay between the images lying on the opposite side of the optical axis resulting from the light rays when one light ray is in the direct orbit and the other is in the retrograde orbit. In contrary, when both light rays travel along either direct or retrograde orbits giving the images on the same side of the optical axis, the charge effect reduces the time delay between them. We then examine the time delay observations due to the galactic and supermassive black holes respectively.