Do you want to publish a course? Click here

On boundary points at which the squeezing function tends to one

49   0   0.0 ( 0 )
 Added by Kang-Tae Kim
 Publication date 2016
  fields
and research's language is English




Ask ChatGPT about the research

J. E. Fornaess has posed the question whether the boundary point of smoothly bounded pseudoconvex domain is strictly pseudoconvex, if the asymptotic limit of the squeezing function is 1. The purpose of this paper is to give an affirmative answer when the domain is in C^2 with smooth boundary of finite type in the sense of DAngelo.



rate research

Read More

120 - Nikolai Nikolov 2017
It is shown that if the squeezing function tends to one at an h-extendible boundary point of a $mathcal C^infty$-smooth, bounded pseudoconvex domain, then the point is strictly pseudoconvex.
An extension of the estimates for the squeezing function of strictly pseudoconvex domains obtained recently by J. E. Fornae ss and E. Wold in cite{FW1} is applied to derive a sharp boundary behaviour of invariant metrics and Bergman curvatures.
127 - Kang-Tae Kim , Liyou Zhang 2013
We describe the boundary behaviors of the squeezing functions for all bounded convex domains in $mathbb{C}^n$ and bounded domains with a $C^2$ strongly convex boundary point.
In the present article, we define squeezing function corresponding to polydisk and study its properties. We investigate relationship between squeezing fuction and squeezing function corresponding to polydisk.
For a domain $D subset mathbb C^n$, the relationship between the squeezing function and the Fridman invariants is clarified. Furthermore, localization properties of these functions are obtained. As applications, some known results concerning their boundary behavior are extended.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا