Unitarity of the time-evolution and observability of non-Hermitian Hamiltonians for time-dependent Dyson maps


Abstract in English

Here we present an strategy for the derivation of a time-dependent Dyson map which ensures simultaneously the unitarity of the time evolution and the observability of a quasi-Hermitian Hamiltonian. The time-dependent Dyson map is derived through a constructed Schr{o}dinger-like equation governed by the non-Hermitian Hamiltonian itself; despite its time-dependence our scheme ensures the time-independence of the metric operator, a necessary condition for the observability of the quasi-Hermitian Hamiltonian. As an illustrative example we consider a driven Harmonic oscillator described by a time-dependent non-Hermitian Hamiltonian. After computing the Dyson map and demonstrating the time-independence of the associated metric operator, we successfully derive an eigenvalue equation for this time-dependent Hamiltonian which enable us to analyze the $mathcal{PT}$-symmetry breaking process.

Download