Do you want to publish a course? Click here

Generation of higher dimensional entangled states in quantum Rabi systems

71   0   0.0 ( 0 )
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present protocols for the generation of high-dimensional entangled states of anharmonic oscillators by means of coherent manipulation of light-matter systems in the ultrastrong coupling regime. Our protocols consider a pair of ultrastrong coupled qubit-cavity systems, each coupled to an ancilla qubit, and combine classical pulses plus the selection rules imposed by the parity symmetry. We study the robustness of the entangling protocols under dissipative effects. This proposal may have applications within state-of-art circuit quantum electrodynamics.



rate research

Read More

We implement several quantum algorithms in real five-qubit superconducting quantum processor IBMqx4 to perform quantum computation of the dynamics of spin-1/2 particles interacting directly and indirectly through the boson field. Particularly, we focus on effects arising due to the presence of entanglement in the initial state of the system. The dynamics is implemented in a digital way using Trotter expansion of evolution operator. Our results demonstrate that dynamics in our modeling based on real device is governed by quantum interference effects being highly sensitive to phase parameters of the initial state. We also discuss limitations of our approach due to the device imperfection as well as possible scaling towards larger systems.
Understanding the interaction between light and matter is very relevant for fundamental studies of quantum electrodynamics and for the development of quantum technologies. The quantum Rabi model captures the physics of a single atom interacting with a single photon at all regimes of coupling strength. We report the spectroscopic observation of a resonant transition that breaks a selection rule in the quantum Rabi model, implemented using an $LC$ resonator and an artificial atom, a superconducting qubit. The eigenstates of the system consist of a superposition of bare qubit-resonator states with a relative sign. When the qubit-resonator coupling strength is negligible compared to their own frequencies, the matrix element between excited eigenstates of different sign is very small in presence of a resonator drive, establishing a sign-preserving selection rule. Here, our qubit-resonator system operates in the ultrastrong coupling regime, where the coupling strength is 10% of the resonator frequency, allowing sign-changing transitions to be activated and, therefore, detected. This work shows that sign-changing transitions are an unambiguous, distinctive signature of systems operating in the ultrastrong coupling regime of the quantum Rabi model. These results pave the way to further studies of sign-preserving selection rules in multiqubit and multiphoton models.
We propose the quantum simulation of the quantum Rabi model in all parameter regimes by means of detuned bichromatic sideband excitations of a single trapped ion. We show that current setups can reproduce, in particular, the ultrastrong and deep strong coupling regimes of such a paradigmatic light-matter interaction. Furthermore, associated with these extreme dipolar regimes, we study the controlled generation and detection of their entangled ground states by means of adiabatic methods. Ion traps have arguably performed the first quantum simulation of the Jaynes-Cummings model, a restricted regime of the quantum Rabi model where the rotating-wave approximation holds. We show that one can go beyond and experimentally investigate the quantum simulation of coupling regimes of the quantum Rabi model that are difficult to achieve with natural dipolar interactions.
178 - A.M. Zagoskin , E. Ilichev , 2012
In parametric systems, squeezed states of radiation can be generated via extra work done by external sources. This eventually increases the entropy of the system despite the fact that squeezing is reversible. We investigate the entropy increase due to squeezing and show that it is quadratic in the squeezing rate and may become important in the repeated operation of tunable oscillators (quantum buses) used to connect qubits in various proposed schemes for quantum computing.
Quantum communication protocols based on nonclassical correlations can be more efficient than known classical methods and offer intrinsic security over direct state transfer. In particular, remote state preparation aims at the creation of a desired and known quantum state at a remote location using classical communication and quantum entanglement. We present an experimental realization of deterministic continuous-variable remote state preparation in the microwave regime over a distance of 35 cm. By employing propagating two-mode squeezed microwave states and feedforward, we achieve the remote preparation of squeezed states with up to 1.6 dB of squeezing below the vacuum level. We quantify security in our implementation using the concept of the one-time pad. Our results represent a significant step towards microwave quantum networks between superconducting circuits.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا