No Arabic abstract
We derive asymptotic freedom and the $SU(3)$ Yang-Mills $beta$-function using the renormalization group procedure for effective particles. In this procedure, the concept of effective particles of size $s$ is introduced. Effective particles in the Fock space build eigenstates of the effective Hamiltonian $H_s$, which is a matrix written in a basis that depend on the scale (or size) parameter $s$. The effective Hamiltonians $H_s$ and the (regularized) canonical Hamiltonian $H_{0}$ are related by a similarity transformation. We calculate the effective Hamiltonian by solving its renormalization-group equation perturbatively up to third order and calculate the running coupling from the three-gluon-vertex function in the effective Hamiltonian operator.
Asymptotic freedom of gluons in QCD is obtained in the leading terms of their renormalized Hamiltonian in the Fock space, instead of considering virtual Greens functions or scattering amplitudes. Namely, we calculate the three-gluon interaction term in the front-form Hamiltonian for effective gluons in the Minkowski space-time using the renormalization group procedure for effective particles (RGPEP), with a new generator. The resulting three-gluon vertex is a function of the scale parameter, $s$, that has an interpretation of the size of effective gluons. The corresponding Hamiltonian running coupling constant, $g_lambda$, depending on the associated momentum scale $lambda = 1/s$, is calculated in the series expansion in powers of $g_0 = g_{lambda_0}$ up to the terms of third order, assuming some small value for $g_0$ at some large $lambda_0$. The result exhibits the same finite sensitivity to small-$x$ regularization as the one obtained in an earlier RGPEP calculation, but the new calculation is simpler than the earlier one because of a simpler generator. This result establishes a degree of universality for pure-gauge QCD in the RGPEP.
In this work, we first use Thompsons renormalization group method to treat QCD-vacuum behavior close to the regime of asymptotic freedom. QCD-vacuum behaves effectively like a paramagnetic system of a classical theory in the sense that virtual color charges (gluons) emerge in it as spin effect of a paramagnetic material when a magnetic field aligns their microscopic magnetic dipoles. Making a classical analogy with the paramagnetism of Landaus theory,we are able to introduce a kind of Landau effective action without temperature and phase transition for simply representing QCD-vacuum behavior at higher energies as magnetization of a paramagnetic material in the presence of a magnetic field H. This reasoning allows us to use Thompsons heuristic approach in order to extract an effective susceptibility ($chi>0$) of QCD-vacuum. It depends on logarithmic of energy scale u to investigate hadronic matter. Consequently,we are able to get an effective magnetic permeability ($mu>1$) of such a paramagnetic vacuum. As QCD-vacuum must obey Lorentz invariance,the attainment of $mu>1$ must simply require that the effective electrical permissivity is $epsilon<1$,in such a way that $muepsilon=1$ (c^2=1).This leads to the antiscreening effect, where the asymptotic freedom takes place. On the other hand, quarks cofinement, a subject which is not treatable by perturbative calculations, is worked by the present approach. We apply the method to study this subject in order to obtain the string constant, which is in agreement with the experiments.
In a recent paper we considered the type 0 string theories, obtained from the ten-dimensional closed NSR string by a GSO projection which excludes space-time fermions, and studied the low-energy dynamics of N coincident D-branes. This led us to conjecture that the four-dimensional SU(N) gauge theory coupled to 6 adjoint massless scalars is dual to a background of type 0 theory carrying N units of R-R 5-form flux and involving a tachyon condensate. The tachyon background leads to a ``soft breaking of conformal invariance, and we derived the corresponding renormalization group equation. Minahan has subsequently found its asymptotic solution for weak coupling and showed that the coupling exhibits logarithmic flow, as expected from the asymptotic freedom of the dual gauge theory. We study this solution in more detail and identify the effect of the 2-loop beta function. We also demonstrate the existence of a fixed point at infinite coupling. Just like the fixed point at zero coupling, it is characterized by the AdS_5times S^5 Einstein frame metric. We argue that there is a RG trajectory extending all the way from the zero coupling fixed point in the UV to the infinite coupling fixed point in the IR.
We derive asymptotic freedom of gluons in terms of the renormalized $SU(3)$ Yang-Mills Hamiltonian in the Fock space. Namely, we use the renormalization group procedure for effective particles (RGPEP) to calculate the three-gluon interaction term in the front-form Yang-Mills Hamiltonian using a perturbative expansion in powers of $g$ up to third order. The resulting three-gluon vertex is a function of the scale parameter $s$ that has an interpretation of the size of effective gluons. The corresponding Hamiltonian running coupling constant exhibits asymptotic freedom, and the corresponding Hamiltonian $beta$-function coincides with the one obtained in an earlier calculation using a different generator.
An effective field theory model of the massive Yang-Mills theory is considered. Assuming that the renormalized coupling constants of non-renormalizable interactions are suppressed by a large scale parameter it is shown that in analogy to the non-abelian gauge invariant theory the dimensionless coupling constant vanishes logarithmically for large values of the renormalization scale parameter.