Do you want to publish a course? Click here

Convergence of Sparse Collocation for Functions of Countably Many Gaussian Random Variables (with Application to Elliptic PDEs)

115   0   0.0 ( 0 )
 Added by Bj\\\"orn Sprungk
 Publication date 2016
  fields
and research's language is English




Ask ChatGPT about the research

We give a convergence proof for the approximation by sparse collocation of Hilbert-space-valued functions depending on countably many Gaussian random variables. Such functions appear as solutions of elliptic PDEs with lognormal diffusion coefficients. We outline a general $L^2$-convergence theory based on previous work by Bachmayr et al. (2016) and Chen (2016) and establish an algebraic convergence rate for sufficiently smooth functions assuming a mild growth bound for the univariate hierarchical surpluses of the interpolation scheme applied to Hermite polynomials. We verify specifically for Gauss-Hermite nodes that this assumption holds and also show algebraic convergence w.r.t. the resulting number of sparse grid points for this case. Numerical experiments illustrate the dimension-independent convergence rate.



rate research

Read More

This work is a follow-up to our previous contribution (Convergence of sparse collocation for functions of countably many Gaussian random variables (with application to elliptic PDEs), SIAM J. Numer. Anal., 2018), and contains further insights on some aspects of the solution of elliptic PDEs with lognormal diffusion coefficients using sparse grids. Specifically, we first focus on the choice of univariate interpolation rules, advocating the use of Gaussian Leja points as introduced by Narayan and Jakeman (Adaptive Leja sparse grid constructions for stochastic collocation and high-dimensional approximation, SIAM J. Sci. Comput., 2014) and then discuss the possible computational advantages of replacing the standard Karhunen-Lo`eve expansion of the diffusion coefficient with the Levy-Ciesielski expansion, motivated by theoretical work of Bachmayr, Cohen, DeVore, and Migliorati (Sparse polynomial approximation of parametric elliptic PDEs. part II: lognormal coefficients, ESAIM: M2AN, 2016). Our numerical results indicate that, for the problem under consideration, Gaussian Leja collocation points outperform Gauss-Hermite and Genz-Keister nodes for the sparse grid approximation and that the Karhunen-Lo`eve expansion of the log diffusion coefficient is more appropriate than its Levy-Ciesielski expansion for purpose of sparse grid collocation.
In this work we introduce the Multi-Index Stochastic Collocation method (MISC) for computing statistics of the solution of a PDE with random data. MISC is a combination technique based on mixed differences of spatial approximations and quadratures over the space of random data. We propose an optimization procedure to select the most effective mixed differences to include in the MISC estimator: such optimization is a crucial step and allows us to build a method that, provided with sufficient solution regularity, is potentially more effective than other multi-level collocation methods already available in literature. We then provide a complexity analysis that assumes decay rates of product type for such mixed differences, showing that in the optimal case the convergence rate of MISC is only dictated by the convergence of the deterministic solver applied to a one dimensional problem. We show the effectiveness of MISC with some computational tests, comparing it with other related methods available in the literature, such as the Multi-Index and Multilevel Monte Carlo, Multilevel Stochastic Collocation, Quasi Optimal Stochastic Collocation and Sparse Composite Collocation methods.
In this paper, we introduce a multiscale framework based on adaptive edge basis functions to solve second-order linear elliptic PDEs with rough coefficients. One of the main results is that we prove the proposed multiscale method achieves nearly exponential convergence in the approximation error with respect to the computational degrees of freedom. Our strategy is to perform an energy orthogonal decomposition of the solution space into a coarse scale component comprising $a$-harmonic functions in each element of the mesh, and a fine scale component named the bubble part that can be computed locally and efficiently. The coarse scale component depends entirely on function values on edges. Our approximation on each edge is made in the Lions-Magenes space $H_{00}^{1/2}(e)$, which we will demonstrate to be a natural and powerful choice. We construct edge basis functions using local oversampling and singular value decomposition. When local information of the right-hand side is adaptively incorporated into the edge basis functions, we prove a nearly exponential convergence rate of the approximation error. Numerical experiments validate and extend our theoretical analysis; in particular, we observe no obvious degradation in accuracy for high-contrast media problems.
Convergence of an adaptive collocation method for the stationary parametric diffusion equation with finite-dimensional affine coefficient is shown. The adaptive algorithm relies on a recently introduced residual-based reliable a posteriori error estimator. For the convergence proof, a strategy recently used for a stochastic Galerkin method with an hierarchical error estimator is transferred to the collocation setting. Extensions to other variants of adaptive collocation methods (including the classical one proposed in the paper Dimension-adaptive tensor-product quadratuture Computing (2003) by T. Gerstner and M. Griebel) is explored.
The numerical approximation of the solution to a stochastic partial differential equation with additive spatial white noise on a bounded domain is considered. The differential operator is assumed to be a fractional power of an integer order elliptic differential operator. The solution is approximated by means of a finite element discretization in space and a quadrature approximation of an integral representation of the fractional inverse from the Dunford-Taylor calculus. For the resulting approximation, a concise analysis of the weak error is performed. Specifically, for the class of twice continuously Frechet differentiable functionals with second derivatives of polynomial growth, an explicit rate of weak convergence is derived, and it is shown that the component of the convergence rate stemming from the stochasticity is doubled compared to the corresponding strong rate. Numerical experiments for different functionals validate the theoretical results.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا