Do you want to publish a course? Click here

The VMC Survey XXII. Hierarchical Star Formation in the 30 Doradus-N158-N159-N160 Star-Forming Complex

80   0   0.0 ( 0 )
 Added by Ning-Chen Sun Mr.
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the hierarchical stellar structures in a $sim$1.5 deg$^2$ area covering the 30 Doradus-N158-N159-N160 star-forming complex with the VISTA Survey of the Magellanic Clouds. Based on the young upper main-sequence stars, we find that the surface densities cover a wide range of values, from log($Sigmacdot$pc$^2$) $lesssim$ $-$2.0 to log($Sigmacdot$pc$^2$) $gtrsim$ 0.0. Their distributions are highly non-uniform, showing groups that frequently have sub-groups inside. The sizes of the stellar groups do not exhibit characteristic values, and range continuously from several parsecs to more than 100 pc; the cumulative size distribution can be well described by a single power law, with the power-law index indicating a projected fractal dimension $D_2$ = 1.6 $pm$ 0.3. We suggest that the phenomena revealed here support a scenario of hierarchical star formation. Comparisons with other star-forming regions and galaxies are also discussed.



rate research

Read More

We present a study of the infrared/submm emission of the LMC star forming complex N158-N159-N160. Combining observations from the Spitzer Space Telescope (3.6-70um), the Herschel Space Observatory (100-500um) and LABOCA (870um) allows us to work at the best angular resolution available now for an extragalactic source. We observe a remarkably good correlation between SPIRE and LABOCA emission and resolve the low surface brightnesses emission. We use the Spitzer and Herschel data to perform a resolved Spectral Energy Distribution (SED) modelling of the complex. Using MBB, we derive a global emissivity index beta_c of 1.47. If beta cold is fixed to 1.5, we find an average temperature of 27K. We also apply the Galliano et al. (2011) modelling technique (and amorphous carbon to model carbon dust) to derive maps of the star formation rate, the mean starlight intensity, the fraction of PAHs or the dust mass surface density of the region. We observe that the PAH fraction strongly decreases in the HII regions. This decrease coincides with peaks in the mean radiation field intensity map. The dust surface densities follow the FIR distribution, with a total dust mass of 2.1x10^4 Msolar (2.8 times less than when using graphite grains) in the resolved elements we model. We find a non-negligible amount of dust in the molecular cloud N159 South (showing no massive SF). We also investigate the drivers of the Herschel/PACS and SPIRE submm colours as well as the variations in the gas-to-dust mass ratio (G/D) and the XCO conversion factor in the region N159. We finally model individual regions to analyse variations in the SED shape across the complex and the 870um emission in more details. No measurable submm excess emission at 870um seems to be detected in these regions.
In this paper we report a clustering analysis of upper main-sequence stars in the Small Magellanic Cloud, using data from the VMC survey (the VISTA near-infrared YJKs survey of the Magellanic system). Young stellar structures are identified as surface overdensities on a range of significance levels. They are found to be organized in a hierarchical pattern, such that larger structures at lower significance levels contain smaller ones at higher significance levels. They have very irregular morphologies, with a perimeter-area dimension of 1.44 +/- 0.02 for their projected boundaries. They have a power-law mass-size relation, power-law size/mass distributions, and a lognormal surface density distribution. We derive a projected fractal dimension of 1.48 +/- 0.03 from the mass-size relation, or of 1.4 +/- 0.1 from the size distribution, reflecting significant lumpiness of the young stellar structures. These properties are remarkably similar to those of a turbulent interstellar medium (ISM), supporting a scenario of hierarchical star formation regulated by supersonic turbulence.
Star formation is a hierarchical process, forming young stellar structures of star clusters, associations, and complexes over a wide scale range. The star-forming complex in the bar region of the Large Magellanic Cloud is investigated with upper main-sequence stars observed by the VISTA Survey of the Magellanic Clouds. The upper main-sequence stars exhibit highly non-uniform distributions. Young stellar structures inside the complex are identified from the stellar density map as density enhancements of different significance levels. We find that these structures are hierarchically organized such that larger, lower-density structures contain one or several smaller, higher-density ones. They follow power-law size and mass distributions as well as a lognormal surface density distribution. All these results support a scenario of hierarchical star formation regulated by turbulence. The temporal evolution of young stellar structures is explored by using subsamples of upper main-sequence stars with different magnitude and age ranges. While the youngest subsample, with a median age of log($tau$/yr)~=~7.2, contains most substructure, progressively older ones are less and less substructured. The oldest subsample, with a median age of log($tau$/yr)~=~8.0, is almost indistinguishable from a uniform distribution on spatial scales of 30--300~pc, suggesting that the young stellar structures are completely dispersed on a timescale of $sim$100~Myr. These results are consistent with the characteristics of the 30~Doradus complex and the entire Large Magellanic Cloud, suggesting no significant environmental effects. We further point out that the fractal dimension may be method-dependent for stellar samples with significant age spreads.
Using observations obtained with the Wide Field Camera 3 (WFC3) on board the Hubble Space Telescope (HST), we have studied the properties of the stellar populations in the central regions of 30 Dor, in the Large Magellanic Cloud. The observations clearly reveal the presence of considerable differential extinction across the field. We characterise and quantify this effect using young massive main sequence stars to derive a statistical reddening correction for most objects in the field. We then search for pre-main sequence (PMS) stars by looking for objects with a strong (> 4 sigma) Halpha excess emission and find about 1150 of them over the entire field. Comparison of their location in the Hertzsprung-Russell diagram with theoretical PMS evolutionary tracks for the appropriate metallicity reveals that about one third of these objects are younger than ~4Myr, compatible with the age of the massive stars in the central ionising cluster R136, whereas the rest have ages up to ~30Myr, with a median age of ~12Myr. This indicates that star formation has proceeded over an extended period of time, although we cannot discriminate between an extended episode and a series of short and frequent bursts that are not resolved in time. While the younger PMS population preferentially occupies the central regions of the cluster, older PMS objects are more uniformly distributed across the field and are remarkably few at the very centre of the cluster. We attribute this latter effect to photoevaporation of the older circumstellar discs caused by the massive ionising members of R136.
123 - S. Rubele , L. Kerber , L. Girardi 2011
We derive the star formation history for several regions of the LMC, using deep near-infrared data from the VISTA near-infrared YJKs survey of the Magellanic system (VMC). The regions include three almost-complete 1.4 sqdeg tiles located 3.5 deg away from the LMC centre in distinct directions. To this dataset, we add two 0.036 sqdeg subregions inside the 30 Doradus tile. The SFH is derived from the simultaneous reconstruction of two different CMDs, using the minimization code StarFISH. The distance modulus (m-M)_0 and extinction Av is varied within intervals 0.2 and 0.5 mag wide, respectively, within which we identify the best-fitting star formation rate SFR(t), age-metallicity relation (AMR), (m-M)_0 and Av. Our results demonstrate that VMC data, due to the combination of depth and little sensitivity to differential reddening, allow the derivation of the space-resolved SFH of the LMC with unprecedented quality compared to previous wide-area surveys. In particular, the data clearly reveal the presence of peaks in the SFR(t) at ages log(t/yr)=9.3 and 9.7, which appear in most of the subregions. The most recent SFR is found to vary greatly from subregion to subregion, with the general trend of being more intense in the innermost LMC, except for the tile next to the N11 complex. In the bar region, the SFR seems remarkably constant over the time interval from 8.4 to 9.7. The AMRs, instead, turn out to be remarkably similar across the LMC. The fields studied so far are fit extremely well by a single disk of inclination 26.2+-2.0 deg, position angle of the line of nodes 129.1+-13.0 deg, and distance modulus of 18.470+-0.006 mag (random errors only) up to the LMC centre.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا