In systems of ultracold atoms, pairwise interactions are resonantly enhanced by the application of an oscillating magnetic field that is parallel to the spin-quantization axis of the atoms. The resonance occurs when the frequency of the applied field is precisely tuned near the transition frequency between the scattering atoms and a diatomic molecule. The resulting cross section can be made more than two orders of magnitude larger than the cross section in the absence of the oscillating field. The low momentum resonance properties have a universal description that is independent of the atomic species. To arrive at these conclusions, we first develop a formal extension of Floquet theory to describe scattering of atoms with time-periodic, short-range interaction potentials. We then calculate the atomic scattering properties by modeling the atomic interactions with a square well potential with oscillating depth and then explicitly solving the time-dependent Schrodinger equation. We then apply the Floquet formalism to the case of atoms scattering with a contact interaction described by a time-periodic scattering length, obtaining analytic results that agree with those obtained by solving the time-dependent Schrodinger equation.