Do you want to publish a course? Click here

Lagrangian 3D tracking of fluorescent microscopic objects in motion

82   0   0.0 ( 0 )
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We describe the development of a tracking device, mounted on an epi-fluorescent inverted microscope, suited to obtain time resolved 3D Lagrangian tracks of fluorescent passive or active micro-objects in micro-fluidic devices. The system is based on real-time image processing, determining the displacement of a x,y mechanical stage to keep the chosen object at a fixed position in the observation frame. The z displacement is based on the refocusing of the fluorescent object determining the displacement of a piezo mover keeping the moving object in focus. Track coordinates of the object with respect to the micro-fluidic device, as well as images of the object are obtained at a frequency of several tenths of Hertz. This device is particularly well adapted to obtain trajectories of motile micro-organisms in micro-fluidic devices with or without flow.

rate research

Read More

We present a multi-scale modeling and simulation framework for low-Reynolds number hydrodynamics of shape-changing immersed objects, e.g., biological microswimmers and active surfaces. The key idea is to consider principal shape changes as generalized coordinates, and define conjugate generalized hydrodynamic friction forces. Conveniently, the corresponding generalized friction coefficients can be pre-computed and subsequently re-used to solve dynamic equations of motion fast. This framework extends Lagrangian mechanics of dissipative systems to active surfaces and active microswimmers, whose shape dynamics is driven by internal forces. As an application case, we predict in-phase and anti-phase synchronization in pairs of cilia for an experimentally measured cilia beat pattern.
The present work presents a density-functional microscopic model of soft biological tissue. The model was based on a prototype molecular structure from experimentally resolved collagen peptide residues and water clusters and has the objective to capture some well-known experimental features of soft tissues. It was obtained the optimized geometry, binding and coupling energies and dipole moments. The results concerning the stability of the confined water clusters, the water-water and water-collagen interactions within the CLBM framework were successfully correlated to some important trends observed experimentally in inflammatory tissues.
Epithelial cell monolayers show remarkable displacement and velocity correlations over distances of ten or more cell sizes that are reminiscent of supercooled liquids and active nematics. We show that many observed features can be described within the framework of dense active matter, and argue that persistent uncoordinated cell motility coupled to the collective elastic modes of the cell sheet is sufficient to produce swirl-like correlations. We obtain this result using both continuum active linear elasticity and a normal modes formalism, and validate analytical predictions with numerical simulations of two agent-based cell models, soft elastic particles and the self-propelled Voronoi model together with in-vitro experiments of confluent corneal epithelial cell sheets. Simulations and normal mode analysis perfectly match when tissue-level reorganisation occurs on times longer than the persistence time of cell motility. Our analytical model quantitatively matches measured velocity correlation functions over more than a decade with a single fitting parameter.
We numerically investigate the morphology and disclination line dynamics of active nematic droplets in three dimensions. Although our model only incorporates the simplest possible form of achiral active stress, active nematic droplets display an unprecedented range of complex morphologies. For extensile activity finger-like protrusions grow at points where disclination lines intersect the droplet surface. For contractile activity, however, the activity field drives cup-shaped droplet invagination, run-and-tumble motion or the formation of surface wrinkles. This diversity of behaviour is explained in terms of an interplay between active anchoring, active flows and the dynamics of the motile dislocation lines. We discuss our findings in the light of biological processes such as morphogenesis, collective cancer invasion and the shape control of biomembranes, suggesting that some biological systems may share the same underlying mechanisms as active nematic droplets.
We derive a mobility tensor for many cylindrical objects embedded in a viscous sheet. This tensor guarantees a positive dissipation rate for any configuration of particles and forces, analogously to the Rotne-Prager-Yamakawa tensor for spherical particles in a three-dimensional viscous fluid. We test our result for a ring of radially driven particles, demonstrating the positive-definite property at all particle densities. The derived tensor can be utilized in Brownian Dynamics simulations with hydrodynamic interactions for such systems as proteins in biomembranes and inclusions in free-standing liquid films.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا