Do you want to publish a course? Click here

Dynamics and energy spectra of aperiodic discrete-time quantum walks

300   0   0.0 ( 0 )
 Added by Nicolino Lo Gullo
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

Deterministically aperiodic sequences are an intermediary between periodic sequences and completely random sequences. Materials which are translationally periodic have Bloch-like extended states, while random media exhibit Anderson localisation. Materials constructed on the basis of deterministic aperiodic sequences such as Fibonacci, Thue-Morse, and Rudin-Shapiro exhibit different properties, which can be related to their spectrum. Here, by investigating the dynamics of discrete-time quantum walks using different aperiodic sequences of coin operations in position space and time we establish the role of the diffraction spectra in characterizing the spreading of the wavepacket.



rate research

Read More

Quantum percolation describes the problem of a quantum particle moving through a disordered system. While certain similarities to classical percolation exist, the quantum case has additional complexity due to the possibility of Anderson localisation. Here, we consider a directed discrete-time quantum walk as a model to study quantum percolation of a two-state particle on a two-dimensional lattice. Using numerical analysis we determine the fraction of connected edges required (transition point) in the lattice for the two-state particle to percolate with finite (non-zero) probability for three fundamental lattice geometries, finite square lattice, honeycomb lattice, and nanotube structure and show that it tends towards unity for increasing lattice sizes. To support the numerical results we also use a continuum approximation to analytically derive the expression for the percolation probability for the case of the square lattice and show that it agrees with the numerically obtained results for the discrete case. Beyond the fundamental interest to understand the dynamics of a two-state particle on a lattice (network) with disconnected vertices, our study has the potential to shed light on the transport dynamics in various quantum condensed matter systems and the construction of quantum information processing and communication protocols.
We make and generalize the observation that summing of probability amplitudes of a discrete-time quantum walk over partitions of the walking graph consistent with the step operator results in a unitary evolution on the reduced graph which is also a quantum walk. Since the effective walking graph of the projected walk is not necessarily simpler than the original, this may bring new insights into the dynamics of some kinds of quantum walks using known results from thoroughly studied cases like Euclidean lattices. We use abstract treatment of the walking space and walker displacements in aim for a generality of the presented statements. Using this approach we also identify some pathological cases in which the projection mapping breaks down. For walks on lattices, the operation typically results in quantum walks with hyper-dimensional coin spaces. Such walks can, conversely, be viewed as projections of walks on inaccessible, larger spaces, and their properties can be inferred from the parental walk. We show that this is is the case for a lazy quantum walk, a walk with large coherent jumps and a walk on a circle with a twisted boundary condition. We also discuss the relation of this theory to the time-multiplexing optical implementations of quantum walks. Moreover, this manifestly irreversible operation can, in some cases and with a minor adjustment, be undone, and a quantum walk can be reconstructed from a set of its projections.
Quantum state preparation in high-dimensional systems is an essential requirement for many quantum-technology applications. The engineering of an arbitrary quantum state is, however, typically strongly dependent on the experimental platform chosen for implementation, and a general framework is still missing. Here we show that coined quantum walks on a line, which represent a framework general enough to encompass a variety of different platforms, can be used for quantum state engineering of arbitrary superpositions of the walkers sites. We achieve this goal by identifying a set of conditions that fully characterize the reachable states in the space comprising walker and coin, and providing a method to efficiently compute the corresponding set of coin parameters. We assess the feasibility of our proposal by identifying a linear optics experiment based on photonic orbital angular momentum technology.
Spontaneous symmetry breaking is a fundamental concept in many areas of physics, ranging from cosmology and particle physics to condensed matter. A prime example is the breaking of spatial translation symmetry, which underlies the formation of crystals and the phase transition from liquid to solid. Analogous to crystals in space, the breaking of translation symmetry in time and the emergence of a time crystal was recently proposed, but later shown to be forbidden in thermal equilibrium. However, non-equilibrium Floquet systems subject to a periodic drive can exhibit persistent time-correlations at an emergent sub-harmonic frequency. This new phase of matter has been dubbed a discrete time crystal (DTC). Here, we present the first experimental observation of a discrete time crystal, in an interacting spin chain of trapped atomic ions. We apply a periodic Hamiltonian to the system under many-body localization (MBL) conditions, and observe a sub-harmonic temporal response that is robust to external perturbations. Such a time crystal opens the door for studying systems with long-range spatial-temporal correlations and novel phases of matter that emerge under intrinsically non-equilibrium conditions.
Quantum walks constitute a versatile platform for simulating transport phenomena on discrete graphs including topological material properties while providing a high control over the relevant parameters at the same time. To experimentally access and directly measure the topological invariants of quantum walks we implement the scattering scheme proposed by Tarasinski et al.[Phys. Rev. A 89, 042327 (2014)] in a photonic time multiplexed quantum walk experiment. The tunable coin operation provides opportunity to reach distinct topological phases, and accordingly to observe the corresponding topological phase transitions. The ability to read-out the position and the coin state distribution, complemented by explicit interferometric sign measurements, allowed the reconstruction of the scattered reflection amplitudes and thus the computation of the associated bulk topological invariants. As predicted we also find localised states at the edges between two bulks belonging to different topological phases. In order to analyse the impact of disorder we have measured invariants of two different types of disordered samples in large ensemble measurements, demonstrating their constancy in one disorder regime and a continuous transition with increasing disorder strength for the second disorder sample.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا