There have been continuous efforts in searching for unconventional superconductivity over the past five decades. Compared to the well-established d-wave superconductivity in cuprates, the existence of superconductivity with other high-angular-momentum pairing symmetries is less conclusive. Bi/Ni epitaxial bilayer is a potential unconventional superconductor with broken time reversal symmetry (TRS), for that it demonstrates superconductivity and ferromagnetism simultaneously at low temperatures. We employ a specially designed superconducting quantum interference device (SQUID) to detect, on the Bi/Ni bilayer, the orbital magnetic moment which is expected if the TRS is broken. An anomalous hysteretic magnetic response has been observed in the superconducting state, providing the evidence for the existence of chiral superconducting domains in the material.