Do you want to publish a course? Click here

Numerical methods for the deterministic second moment equation of parabolic stochastic PDEs

118   0   0.0 ( 0 )
 Added by Kristin Kirchner
 Publication date 2016
  fields
and research's language is English




Ask ChatGPT about the research

Numerical methods for stochastic partial differential equations typically estimate moments of the solution from sampled paths. Instead, we shall directly target the deterministic equations satisfied by the first and second moments, as well as the covariance. In the first part, we focus on stochastic ordinary differential equations. For the canonical examples with additive noise (Ornstein-Uhlenbeck process) or multiplicative noise (geometric Brownian motion) we derive these deterministic equations in variational form and discuss their well-posedness in detail. Notably, the second moment equation in the multiplicative case is naturally posed on projective-injective tensor product spaces as trial-test spaces. We construct Petrov-Galerkin discretizations based on tensor product piecewise polynomials and analyze their stability and convergence in these natural norms. In the second part, we proceed with parabolic stochastic partial differential equations with affine multiplicative noise. We prove well-posedness of the deterministic variational problem for the second moment, improving an earlier result. We then propose conforming space-time Petrov-Galerkin discretizations, which we show to be stable and quasi-optimal. In both parts, the outcomes are illustrated by numerical examples.



rate research

Read More

Meshfree methods based on radial basis function (RBF) approximation are of interest for numerical solution of partial differential equations (PDEs) because they are flexible with respect to the geometry of the computational domain, they can provide high order convergence, they are not more complicated for problems with many space dimensions and they allow for local refinement. The aim of this paper is to show that the solution of the Rosenau equation, as an example of an initial-boundary value problem with multiple boundary conditions, can be implemented using RBF approximation methods. We extend the fictitious point method and the resampling method to work in combination with an RBF collocation method. Both approaches are implemented in one and two space dimensions. The accuracy of the RBF fictitious point method is analysed partly theoretically and partly numerically. The error estimates indicate that a high order of convergence can be achieved for the Rosenau equation. The numerical experiments show that both methods perform well. In the one-dimensional case, the accuracy of the RBF approaches is compared with that of a pseudospectral resampling method, showing similar or slightly better accuracy for the RBF methods. In the two-dimensional case, the Rosenau problem is solved both in a square domain and in a starfish-shaped domain, to illustrate the capability of the RBF-based methods to handle irregular geometries.
The numerical approximation of solutions to stochastic partial differential equations with additive spatial white noise on bounded domains in $mathbb{R}^d$ is considered. The differential operator is given by the fractional power $L^beta$, $betain(0,1)$, of an integer order elliptic differential operator $L$ and is therefore non-local. Its inverse $L^{-beta}$ is represented by a Bochner integral from the Dunford-Taylor functional calculus. By applying a quadrature formula to this integral representation, the inverse fractional power operator $L^{-beta}$ is approximated by a weighted sum of non-fractional resolvents $(I + t_j^2 L)^{-1}$ at certain quadrature nodes $t_j>0$. The resolvents are then discretized in space by a standard finite element method. This approach is combined with an approximation of the white noise, which is based only on the mass matrix of the finite element discretization. In this way, an efficient numerical algorithm for computing samples of the approximate solution is obtained. For the resulting approximation, the strong mean-square error is analyzed and an explicit rate of convergence is derived. Numerical experiments for $L=kappa^2-Delta$, $kappa > 0$, with homogeneous Dirichlet boundary conditions on the unit cube $(0,1)^d$ in $d=1,2,3$ spatial dimensions for varying $betain(0,1)$ attest the theoretical results.
We develop in this work a numerical method for stochastic differential equations (SDEs) with weak second order accuracy based on Gaussian mixture. Unlike the conventional higher order schemes for SDEs based on It^o-Taylor expansion and iterated It^o integrals, the proposed scheme approximates the probability measure $mu(X^{n+1}|X^n=x_n)$ by a mixture of Gaussians. The solution at next time step $X^{n+1}$ is then drawn from the Gaussian mixture with complexity linear in the dimension $d$. This provides a new general strategy to construct efficient high weak order numerical schemes for SDEs.
In this paper we analyze and implement a second-order-in-time numerical scheme for the three-dimensional phase field crystal (PFC) equation. The numerical scheme was proposed in [46], with the unique solvability and unconditional energy stability established. However, its convergence analysis remains open. We present a detailed convergence analysis in this article, in which the maximum norm estimate of the numerical solution over grid points plays an essential role. Moreover, we outline the detailed multigrid method to solve the highly nonlinear numerical scheme over a cubic domain, and various three-dimensional numerical results are presented, including the numerical convergence test, complexity test of the multigrid solver and the polycrystal growth simulation.
121 - David Cohen , Annika Lang 2021
Solutions to the stochastic wave equation on the unit sphere are approximated by spectral methods. Strong, weak, and almost sure convergence rates for the proposed numerical schemes are provided and shown to depend only on the smoothness of the driving noise and the initial conditions. Numerical experiments confirm the theoretical rates. The developed numerical method is extended to stochastic wave equations on higher-dimensional spheres and to the free stochastic Schrodinger equation on the unit sphere.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا