Do you want to publish a course? Click here

Automorphic congruences and torsion in the cohomology of a simple unitary Shimura variety

82   0   0.0 ( 0 )
 Added by Pascal Boyer
 Publication date 2016
  fields
and research's language is English
 Authors Pascal Boyer




Ask ChatGPT about the research

We first give a relative flexible process to construct torsion cohomology classes for Shimura varieties of Kottwitz-Harris-Taylor type with coefficient in a non too regular local system. We then prove that associated to each torsion cohomology class, there exists a infinity of irreducible automorphic representations in characteristic zero, which are pairwise non isomorphic and weakly congruent.



rate research

Read More

163 - Pascal Boyer 2015
We study the torsion cohomology classes of Shimura varieties of type Kottwitz-Harris-Taylor and we show that up to an arbitrary place one can raise them to an automorphic representation. In application, to any mod $l$ system of Hecke eigenvalues appearing in the $bar{mathbb F}_l$-cohomology of a Shimuras variety of Kottwitz-Harris-Taylor type, we associate a $bar{mathbb F}_l$-Galois representation which Frobenius eigenvalues are given by Heckes. Compared to the highly more general construction of Scholze, we gain both the simplicity of the proof and the control at places ramified and at those dividing $l$.
299 - Pascal Boyer 2017
A particular case of Bergeron-Venkateshs conjecture predicts that torsion classes in the cohomology of Shimura varieties are rather rare. According to this and for Kottwitz-Harris-Taylor type of Shimura varieties, we first associate to each such torsion class an infinity of irreducible automorphic representations in characteristic zero, which are pairwise non isomorphic and weakly congruent. Then, using completed cohomology, we construct torsion classes in regular weight and then deduce explicit examples of such automorphic congruences.
311 - Pascal Boyer 2019
Let $Sh_K(G,mu)$ be a Shimura variety of KHT type, as introduced in Harris-Taylor book, associated to some similitude group $G/mathbb Q$ and a open compact subgroup $K$ of $G(mathbb A)$. For any irreducible algebraic $overline{mathbb Q}_l$-representation $xi$ of $G$, let $V_xi$ be the $mathbb Z_l$-local system on $Sh_K(G,mu)$. From my paper about p-stabilization, we know that if we allow the local component $K_l$ of $K$ to be small enough, then there must exists some non trivial cohomology classes with coefficient in $V_xi$. The aim of this paper is then to construct explicitly such torsion classes with the control of $K_l$. As an application we obtain the construction of some new automorphic congruences between tempered and non tempered automorphic representations of the same weight and same level at $l$.
We investigate the correspondence between holomorphic automorphic forms on the upper half-plane with complex weight and parabolic cocycles. For integral weights at least 2 this correspondence is given by the Eichler integral. Knopp generalized this to real weights. We show that for weights that are not an integer at least 2 the generalized Eichler integral gives an injection into the first cohomology group with values in a module of holomorphic functions, and characterize the image. We impose no condition on the growth of the automorphic forms at the cusps. For real weights that are not an integer at least 2 we similarly characterize the space of cusp forms and the space of entire automorphic forms. We give a relation between the cohomology classes attached to holomorphic automorphic forms of real weight and the existence of harmonic lifts. A tool in establishing these results is the relation to cohomology groups with values in modules of analytic boundary germs, which are represented by harmonic functions on subsets of the upper half-plane. Even for positive integral weights cohomology with these coefficients can distinguish all holomorphic automorphic forms, unlike the classical Eichler theory.
The integral model of a GU(n-1,1) Shimura variety carries a universal abelian scheme over it, and the dual top exterior power of its Lie algebra carries a natural hermitian metric. We express the arithmetic volume of this metrized line bundle, defined as an iterated self-intersection in the Gillet-Soule arithmetic Chow ring, in terms of logarithmic derivatives of Dirichlet L-functions.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا