No Arabic abstract
The compositions of nascent planets depend on the compositions of their birth disks. In particular, the elemental compositions of Gas Giant gaseous envelopes depend on the elemental composition of the disk gas from which the envelope is accreted. Previous models demonstrated that sequential freeze-out of O and C-bearing volatiles in disks will result in an supersolar C/O ratios and subsolar C/H ratios in the gas between water and CO snowlines. This result does not take into account, however, the expected grain growth and radial drift of pebbles in disks, and the accompanying re-distribution of volatiles from the outer to the inner disk. Using a toy model we demonstrate that when drift is considered, CO is enhanced between the water and CO snowline, resulting in both supersolar C/O and C/H ratios in the disk gas in the Gas Giant formation zone. This result appears robust to the details of the disk model as long as there is substantial pebble drift across the CO snowline, and the efficiency of CO vapor diffusion is limited. Gas Giants that accrete their gaseous envelopes exterior to the water snowline and do not experience substantial core-envelope mixing, may thus present both superstellar C/O and C/H ratios in their atmospheres. Pebble drift will also affect the nitrogen and noble gas abundances in the planet forming zones, which may explain some of Jupiters peculiar abundance patterns.
Sulfur-bearing molecules play an important role in prebiotic chemistry and planet habitability. They are also proposed probes of chemical ages, elemental C/O ratio, and grain chemistry processing. Commonly detected in diverse astrophysical objects, including the Solar System, their distribution and chemistry remain, however, largely unknown in planet-forming disks. We present CS ($2-1$) observations at $sim0.3$ resolution performed within the ALMA-MAPS Large Program toward the five disks around IM Lup, GM Aur, AS 209, HD 163296, and MWC 480. CS is detected in all five disks, displaying a variety of radial intensity profiles and spatial distributions across the sample, including intriguing apparent azimuthal asymmetries. Transitions of C$_2$S and SO were also serendipitously covered but only upper limits are found. For MWC 480, we present complementary ALMA observations at $sim0.5$, of CS, $^{13}$CS, C$^{34}$S, H$_2$CS, OCS, and SO$_2$. We find a column density ratio N(H$_{2}$CS)/N(CS)$sim2/3$, suggesting that a substantial part of the sulfur reservoir in disks is in organic form (i.e., C$_x$H$_y$S$_z$). Using astrochemical disk modeling tuned to MWC 480, we demonstrate that $N$(CS)/$N$(SO) is a promising probe for the elemental C/O ratio. The comparison with the observations provides a super-solar C/O. We also find a depleted gas-phase S/H ratio, suggesting either that part of the sulfur reservoir is locked in solid phase or that it remains in an unidentified gas-phase reservoir. This paper is part of the MAPS special issue of the Astrophysical Journal Supplement.
The elemental composition of the gas and dust in a protoplanetary disk influences the compositions of the planets that form in it. We use the Molecules with ALMA at Planet-forming Scales (MAPS) data to constrain the elemental composition of the gas at the locations of potentially forming planets. The elemental abundances are inferred by comparing source-specific gas-grain thermochemical models, with variable C/O ratios and small-grain abundances, from the DALI code with CO and C2H column densities derived from the high-resolution observations of the disks of AS 209, HD 163296, and MWC 480. Elevated C/O ratios (~2.0), even within the CO ice line, are necessary to match the inferred C2H column densities, over most of the pebble disk. Combined with constraints on the CO abundances in these systems, this implies that both the O/H and C/H ratios in the gas are substellar by a factor of 4-10, with the O/H depleted by a factor of 20-50, resulting in the high C/O ratios. This necessitates that even within the CO ice line, most of the volatile carbon and oxygen is still trapped on grains in the midplane. Planets accreting gas in the gaps of the AS 209, HD 163296, and MWC 480 disks will thus acquire very little carbon and oxygen after reaching the pebble isolation mass. In the absence of atmosphere-enriching events, these planets would thus have a strongly substellar O/H and C/H and superstellar C/O atmospheric composition.
The make-up of the outer planets, and many of their moons, are dominated by matter from the H-C-N-O chemical space, commonly assumed to originate from mixtures of hydrogen and the planetary ices H$_2$O, CH$_4$, and NH$_3$. In their interiors, these ices experience extreme pressure conditions, around 5 Mbar at the Neptune mantle-core boundary, and it is expected that they undergo phase transitions, decompose, and form entirely new compounds. In turn, this determines planets interior structure, thermal history, magnetic field generation, etc. Despite its importance, the H-C-N-O space has not been surveyed systematically. Asked simply: at high-pressure conditions, what compounds emerge within this space, and what governs their stability? Here, we report on results from an unbiased crystal structure search amongst H-C-N-O compounds at 5 Mbar to answer this question.
We present high-resolution $^{12}$CO and $^{13}$CO 2-1 ALMA observations, as well as optical and near-infrared spectroscopy, of the highly-inclined protoplanetary disk around SSTC2D J163131.2-242627. The spectral type we derive for the source is consistent with a $rm 1.2 , M_{odot}$ star inferred from the ALMA observations. Despite its massive circumstellar disk, we find little to no evidence for ongoing accretion on the star. The CO maps reveal a disk that is unusually compact along the vertical direction, consistent with its appearance in scattered light images. The gas disk extends about twice as far away as both the submillimeter continuum and the optical scattered light. CO is detected from two surface layers separated by a midplane region in which CO emission is suppressed, as expected from freeze-out in the cold midplane. We apply a modified version of the Topographically Reconstructed Distribution method presented by Dutrey et al. 2017 to derive the temperature structure of the disk. We find a temperature in the CO-emitting layers and the midplane of $sim$33 K and $sim$20 K at $rm R<200$ au, respectively. Outside of $rm R>200$ au, the disks midplane temperature increases to $sim$30 K, with a nearly vertically isothermal profile. The transition in CO temperature coincides with a dramatic reduction in the sub-micron and sub-millimeter emission from the disk. We interpret this as interstellar UV radiation providing an additional source of heating to the outer part of the disk.
We present an analysis of wind absorption in the C II ${lambda}1335$ doublet towards 40 classical T Tauri stars with archival far-ultraviolet (FUV) spectra obtained by the Hubble Space Telescope. Absorption features produced by fast or slow winds are commonly detected (36 out of 40 targets) in our sample. The wind velocity of the fast wind decreases with disk inclination, consistent with expectations for a collimated jet. Slow wind absorption is detected mostly in disks with intermediate or high inclination, without a significant dependence of wind velocity on disk inclination. Both the fast and slow wind absorption are preferentially detected in FUV lines of neutral or singly ionized atoms. The Mg II ${lambda}{lambda}2796,2804$ lines show wind absorption consistent with the absorption in the C II lines. We develop simplified semi-analytical disk/wind models to interpret the observational disk wind absorption. Both fast and slow winds are consistent with expectations from a thermal-magnetized disk wind model and are generally inconsistent with a purely thermal wind. Both the models and the observational analysis indicate that wind absorption occurs preferentially from the inner disk, offering a wind diagnostic in complement to optical forbidden line emission that traces the wind in larger volumes.