On the uniqueness of the Myers-Perry spacetime as a type II(D) solution in six dimensions


Abstract in English

We study the class of vacuum (Ricci flat) six-dimensional spacetimes admitting a non-degenerate multiple Weyl aligned null direction l, thus being of Weyl type II or more special. Subject to an additional assumption on the asymptotic fall-off of the Weyl tensor, we prove that these spacetimes can be completely classified in terms of the two eigenvalues of the (asymptotic) twist matrix of l and of a discrete parameter $U^0=pm 1/2, 0$. All solutions turn out to be Kerr-Schild spacetimes of type D and reduce to a family of generalized Myers-Perry metrics (which include limits and analytic continuations of the original Myers-Perry black hole metric, such as certain NUT spacetimes). A special subcase corresponds to twisting solutions with zero shear. In passing, limits connecting various branches of solutions are briefly discussed.

Download