No Arabic abstract
Dyson--Schwinger equations are an established, powerful non-perturbative tool for QCD. In the Hamiltonian formulation of a quantum field theory they can be used to perform variational calculations with non-Gaussian wave functionals. By means of the DSEs the various $n$-point functions, needed in expectation values of observables like the Hamilton operator, can be thus expressed in terms of the variational kernels of our trial ansatz. Equations of motion for these variational kernels are derived by minimizing the energy density and solved numerically.
The general method for treating non-Gaussian wave functionals in the Hamiltonian formulation of a quantum field theory, which was previously proposed and developed for Yang--Mills theory in Coulomb gauge, is generalized to full QCD. For this purpose the quark part of the QCD vacuum wave functional is expressed in the basis of coherent fermion states, which are defined in term of Grassmann variables. Our variational ansatz for the QCD vacuum wave functional is assumed to be given by exponentials of polynomials in the occurring fields and, furthermore, contains an explicit coupling of the quarks to the gluons. Exploiting Dyson--Schwinger equation techniques, we express the various $n$-point functions, which are required for the expectation values of observables like the Hamiltonian, in terms of the variational kernels of our trial ansatz. Finally the equations of motion for these variational kernels are derived by minimizing the energy density.
The variational Hamiltonian approach to Quantum Chromodynamics in Coulomb gauge is investigated within the framework of the canonical recursive Dyson--Schwinger equations. The dressing of the quark propagator arising from the variationally determined non-perturbative kernels is expanded and renormalized at one-loop order, yielding a chiral condensate compatible with the observations.
We calculate the variation of the chiral condensate in medium with respect to the quark chemical potential and evaluate the pion-nucleon sigma term via the Hellmann-Feynman theorem. The variation of chiral condensate in medium are obtained by solving the truncated Dyson-Schwinger equation for quark propagator at finite chemical potential, with different models for the quark-gluon vertex and gluon propagator. We obtain the value of the sigma term $sigma_{pi N}$ = 62(1)(2) MeV, where the first represents the systematic error due to our different model for the quark-gluon vertex and gluon propagator and the second represents a statistical error in our linear fitting procedure.
A novel approach to the Hamiltonian formulation of quantum field theory at finite temperature is presented. The temperature is introduced by compactification of a spatial dimension. The whole finite-temperature theory is encoded in the ground state on the spatial manifold $S^1 (L) times mathbb{R}^2$ where $L$ is the length of the compactified dimension which defines the inverse temperature. The approach which is then applied to the Hamiltonian formulation of QCD in Coulomb gauge to study the chiral phase transition at finite temperatures.
We provide a study of quantum chromodynamics with the technique of Dyson-Schwinger equations in differential form. In this way, we are able to approach the non-perturbative limit and recover, with some approximations, the t Hooft limit of the theory. Quark mass in the propagator term goes off-shell at low-energies signaling confinement. A condition for such occurrence in the theory is provided.