No Arabic abstract
Studying the temporal variability of BL Lac objects at the highest energies provides unique insights into the extreme physical processes occurring in relativistic jets and in the vicinity of super-massive black holes. To this end, the long-term variability of the BL Lac object PKS 2155-304 is analyzed in the high (HE, 100 MeV < E < 300 GeV) and very high energy (VHE, E > 200 GeV) gamma-ray domain. Over the course of ~9 yr of H.E.S.S observations the VHE light curve in the quiescent state is consistent with a log-normal behavior. The VHE variability in this state is well described by flicker noise (power-spectral-density index {ss}_VHE = 1.10 +0.10 -0.13) on time scales larger than one day. An analysis of 5.5 yr of HE Fermi LAT data gives consistent results ({ss}_HE = 1.20 +0.21 -0.23, on time scales larger than 10 days) compatible with the VHE findings. The HE and VHE power spectral densities show a scale invariance across the probed time ranges. A direct linear correlation between the VHE and HE fluxes could neither be excluded nor firmly established. These long-term-variability properties are discussed and compared to the red noise behavior ({ss} ~ 2) seen on shorter time scales during VHE-flaring states. The difference in power spectral noise behavior at VHE energies during quiescent and flaring states provides evidence that these states are influenced by different physical processes, while the compatibility of the HE and VHE long-term results is suggestive of a common physical link as it might be introduced by an underlying jet-disk connection.
Time variability of the photon flux is a known feature of active galactic nuclei (AGN) and in particular of blazars. The high frequency peaked BL Lac (HBL) object PKS 2155-304 is one of the brightest sources in the TeV band and has been monitored regularly with different instruments and in particular with the H.E.S.S. experiment above 200 GeV for more than 11 years. These data together with the observations of other instruments and monitoring programs like SMARTS (optical), Swift-XRT/RXTE/XMM-Newton (X-ray) and Fermi-LAT (100 MeV < E < 300 GeV) are used to characterize the variability of this object in the quiescent state over a wide energy range. Variability studies are made by looking at the lognormality of the light curves and at the fractional root mean square (rms) variability Fvar in several energy bands. Lognormality is found in every energy range and the evolution of Fvar with the energy shows a similar increase both in X-rays and in TeV bands.
In this paper we report on the analysis of all the available optical and very high-energy $gamma$-ray ($>$200 GeV) data for the BL Lac object PKS 2155$-$304, collected simultaneously with the ATOM and H.E.S.S. telescopes from 2007 until 2009. This study also includes X-ray (RXTE, Swift) and high-energy $gamma$-ray (Fermi-LAT) data. During the period analysed, the source was transitioning from its flaring to quiescent optical states,and was characterized by only moderate flux changes at different wavelengths on the timescales of days and months. A flattening of the optical continuum with an increasing optical flux can be noted in the collected dataset, but only occasionally and only at higher flux levels. We did not find any universal relation between the very high-energy $gamma$-ray and optical flux changes on the timescales from days and weeks up to several years. On the other hand, we noted that at higher flux levels the source can follow two distinct tracks in the optical flux-colour diagrams, which seem to be related to distinct $gamma$-ray states of the blazar. The obtained results therefore indicate a complex scaling between the optical and $gamma$-ray emission of PKS 2155$-$304, with different correlation patterns holding at different epochs, and a $gamma$-ray flux depending on the combination of an optical flux and colour rather than a flux alone.
Observations of very high energy gamma-rays from blazars provide information about acceleration mechanisms occurring in their innermost regions. Studies of variability in these objects allow a better understanding of the mechanisms at play. To investigate the spectral and temporal variability of VHE (>100 GeV) gamma-rays of the well-known high-frequency-peaked BL Lac object PKS 2155-304 with the H.E.S.S. imaging atmospheric Cherenkov telescopes over a wide range of flux states. Data collected from 2005 to 2007 are analyzed. Spectra are derived on time scales ranging from 3 years to 4 minutes. Light curve variability is studied through doubling timescales and structure functions, and is compared with red noise process simulations. The source is found to be in a low state from 2005 to 2007, except for a set of exceptional flares which occurred in July 2006. The quiescent state of the source is characterized by an associated mean flux level of 4.32 +/-0.09 x 10^-11 cm^-2 s^-1 above 200 GeV, or approximately 15% of the Crab Nebula, and a power law photon index of 3.53 +/-0.06. During the flares of July 2006, doubling timescales of ~2 min are found. The spectral index variation is examined over two orders of magnitude in flux, yielding different behaviour at low and high fluxes,which is a new phenomenon in VHE gamma-ray emitting blazars. The variability amplitude characterized by the fractional r.m.s. is strongly energy-dependent and is proportional to E^(0.19 +/- 0.01). The light curve r.m.s. correlates with the flux. This is the signature of a multiplicative process which can be accounted for as a red noise with a Fourier index of ~2. This unique data set shows evidence for a low level gamma-ray emission state from PKS 2155-304, which possibly has a different origin than the outbursts. The discovery of the light curve lognormal behaviour might be an indicator ..
PKS 2155-304 is one of the brightest blazar located in Southern Hemisphere, monitored with H.E.S.S. since the first light of the experiment. Here we report multiwavelength monitoring observations collected during the period of 2015-2016 with H.E.S.S.,Fermi-LAT, Swift-XRT, Swift-UVOT, and ATOM. Two years of multiwavelength data with very good temporal coverage allowed to characterize broadband emission observed from the region of PKS 2155-304 and study potential multifrequency correlations. During the period of monitoring, PKS 2155-304 revealed complex multiwavelength variability with two outbursts characterized by completely different multiband properties. The 2015 activity of the blazar is characterized by a flare observed at all wavelengths studied. The broadband emission observed during the outburst is well correlated without any time lags. Contrary to 2015, in 2016, only orphan outburst in the optical and ultraviolet wavelengths was observed. Such an orphan activity is reported for the first time for the blazar PKS 2155-304.
We investigate the axion like particle (ALP)-photon oscillation effect in the high energy $gamma$-ray spectra of PG 1553+113 and PKS 2155-304 measured by Fermi-LAT and H.E.S.S.. The choice of extragalactic background light (EBL) model, which induces the attenuate effect in observed $gamma$-ray spectra, would affect the ALP implication. For the ordinary EBL model that prefers a null hypothesis, we set constraint on the ALP-photon coupling constant at 95% C.L. as $g_{agamma}lesssim 5times 10^{-11} ~rm{GeV}^{-1}$ for the ALP mass $sim 10$ neV. We also consider the CIBER observation of the cosmic infrared radiation, which shows an excess at the wave wavelength of $sim 1~mu$m after the substraction of foregrounds. The high energy gamma-rays from extragalactic sources at high redshifts would suffer from a more significant attenuate effect caused by this excess. In this case, we find that the ALP-photon oscillation would improve the fit to the observed spectra of PKS 2155-304 and PG 1553+113 and find a favored parameter region at 95% C.L..