No Arabic abstract
Proton-proton (pp) collisions have been used extensively as a reference for the study of interactions of larger colliding systems at the LHC. Recent measurements performed in high-multiplicity pp and proton-lead (p-Pb) collisions have shown features that are reminiscent of those observed in lead-lead (Pb-Pb) collisions. In this context, the study of identified particle spectra and yields as a function of multiplicity is a key tool for the understanding of similarities and differences between small and large systems. We report on the production of pions, kaons, protons, $K^{0}_{rm S}$, $Lambda$, $Xi$, $Omega$ and $K^{*0}$ as a function of multiplicity in pp collisions at $sqrt{s}=$ 7 TeV measured with the ALICE experiment. The work presented here represents the most comprehensive set of results on identified particle production in pp collisions at the LHC. Spectral shapes, studied both for individual particles and via particle ratios as a function of $p_{rm T}$, exhibit an evolution with charged particle multiplicity that is similar to the one observed in larger systems. In addition, results on the production of light flavour hadrons in pp collisions at $sqrt{s}=$ 13 TeV, the highest centre-of-mass energy ever reached in the laboratory, are also presented and compared with previous, lower energy results.
Hadrons measured in proton-proton collisions at sqrt(s) = 0.9 and 7 TeV with the ALICE detector have been identified using various techniques: the specific energy loss and the time-of flight information for charged pions, kaons and protons, the displaced vertex resulting from their weak decay for K0, Lambda and Xi and the kink topology of decaying charged kaons. These various particle identification tools give the best separation at different momentum ranges and the results are combined to obtain spectra from pt = 100 MeV/c to 2.5 GeV/c. This allows to extract total yields. In detail we discuss the K/pi ratio together with previous measurements and we show a fit using a statistical approach.
Recent measurements of charm-baryon production in proton--proton (pp) collisions at midrapidity by the ALICE collaboration showed that baryon-to-meson yield ratios are significantly higher than those measured in $rm e^+e^-$ collisions. The charm baryon-to-meson and charm baryon-to-baryon yield ratios provide unique information on hadronization mechanisms since the contributions from parton distribution function and parton--parton scattering terms cancel in the ratios. In this contribution, the first measurement of $rm Omega_{c}^{0}$ production via the hadronic decay channel $rm Omega_{c}^{0} rightarrow Omega^{-}pi^{+}$ (and its charge conjugate) in $2<p_{rm T}<12$ GeV/$c$ performed with the ALICE detector at midrapidity in pp collisions at $sqrt{s}=$ 13 TeV is presented. The $rm Omega_c^0/D^0$ and $rm Omega_c^0/Xi_c^0$ ratios multiplied by the decay branching ratio $rm BR(Omega_{c}^{0} rightarrow Omega^{-}pi^+)$, which is not experimentally measured, are compared to MC generators with fragmentation fractions based on $rm e^+e^-$ measurements and models including hadronization of charm quark via coalescence.
We analyse the charged${text -}$particle multiplicity distributions measured by the ALICE experiment, over a wide pseudorapidity range, for $pp$ collisions at $sqrt{s}$=8,,7,and, 2.76~TeV at the LHC.~The analysis offers an understanding of particle production in high energy collisions in the purview of a new distribution, the shifted Gompertz distribution.~Data are compared with the distribution and moments of the distributions are calculated.~A modified version of the distribution is also proposed and used to improve the description of the data consisting of two different event classes; the inelastic and the non${text -}$single${text -}$diffractive and their subsets in different windows of pseudorapidity, $eta$.~The distribution used to analyse the data has a wide range of applicability to processes in different fields and complements the analysis done by the ALICE collaboration in terms of various LHC event generators and IP-Glasma calculations.
Charm production at the LHC in pp collisions at sqrt(s)=7 TeV is studied with the LHCb detector. The decays D0 -> K- pi+, D+ -> K- pi+ pi+, D*+ -> D0(K- pi+) pi+, D_s+ -> phi(K- K+) pi+, Lambda_c+ -> p K- pi+, and their charge conjugates are analysed in a data set corresponding to an integrated luminosity of 15 nb^{-1}. Differential cross-sections dsigma/dp_T are measured for prompt production of the five charmed hadron species in bins of transverse momentum and rapidity in the region 0 < p_T < 8 GeV/c and 2.0 < y < 4.5. Theoretical predictions are compared to the measured differential cross-sections. The integrated cross-sections of the charm hadrons are computed in the above p_T-y range, and their ratios are reported. A combination of the five integrated cross-section measurements gives sigma(cbar{c})_{p_T < 8 GeV/c, 2.0 < y < 4.5} = 1419 +/- 12 (stat) +/- 116 (syst) +/- 65 (frag) microbarn, where the uncertainties are statistical, systematic, and due to the fragmentation functions.
Vector mesons are key probes of the hot and dense state of strongly interacting matter produced in heavy ion collisions. Their dileptonic decay channel is particularly suitable for these studies, since dileptons have negligible final state interactions in hadronic matter. A preliminary measurement of the $phi$ and $omega$ differential cross sections was performed by the ALICE experiment in pp collisions at $sqrt{s}=7$ TeV, through their decay in muon pairs. The $p_{rm T}$ and rapidity regions covered in this analysis are $p_{rm T}>1$ GeV$/c$ and $2.5 < y < 4$.