Do you want to publish a course? Click here

Stochastic dynamics for adaptation and evolution of microorganisms

208   0   0.0 ( 0 )
 Added by Viet Chi
 Publication date 2016
  fields Biology
and research's language is English




Ask ChatGPT about the research

We present a model for the dynamics of a population of bacteria with a continuum of traits, who compete for resources and exchange horizontally (transfer) an otherwise vertically inherited trait with possible mutations. Competition influences individual demographics, affecting population size, which feeds back on the dynamics of transfer. We consider a stochastic individual-based pure jump process taking values in the space of point measures, and whose jump events describe the individual reproduction, transfer and death mechanisms. In a large population scale, the stochastic process is proved to converge to the solution of a nonlinear integro-differential equation. When there are only two different traits and no mutation, this equation reduces to a non-standard two-dimensional dynamical system. We show how crucial the forms of the transfer rates are for the long-term behavior of its solutions. We describe the dynamics of invasion and fixation when one of the two traits is initially rare, and compute the invasion probabilities. Then, we study the process under the assumption of rare mutations. We prove that the stochastic process at the mutation time scale converges to a jump process which describes the successive invasions of successful mutants. We show that the horizontal transfer can have a major impact on the distribution of the successive mutational fixations, leading to dramatically different behaviors, from expected evolution scenarios to evolutionary suicide. Simulations are given to illustrate these phenomena.



rate research

Read More

80 - T. Yeo 2020
Here, we consider an SIS epidemic model where the individuals are distributed on several distinct patches. We construct a stochastic model and then prove that it converges to a deterministic model as the total population size tends to infinity. Furthermore, we show the existence and the global stability of a unique endemic equilibrium provided that the migration rates of susceptible and infectious individuals are equal. Finally, we compare the equilibra with those of the homogeneous model, and with those of isolated patches.
338 - Rick Durrett 2009
In this paper I will review twenty years of work on the question: When is there coexistence in stochastic spatial models? The answer, announced in Durrett and Levin [Theor. Pop. Biol. 46 (1994) 363--394], and that we explain in this paper is that this can be determined by examining the mean-field ODE. There are a number of rigorous results in support of this picture, but we will state nine challenging and important open problems, most of which date from the 1990s.
We derive and apply a partial differential equation for the moment generating function of the Wright-Fisher model of population genetics.
Classical ecological theory predicts that environmental stochasticity increases extinction risk by reducing the average per-capita growth rate of populations. To understand the interactive effects of environmental stochasticity, spatial heterogeneity, and dispersal on population growth, we study the following model for population abundances in $n$ patches: the conditional law of $X_{t+dt}$ given $X_t=x$ is such that when $dt$ is small the conditional mean of $X_{t+dt}^i-X_t^i$ is approximately $[x^imu_i+sum_j(x^j D_{ji}-x^i D_{ij})]dt$, where $X_t^i$ and $mu_i$ are the abundance and per capita growth rate in the $i$-th patch respectivly, and $D_{ij}$ is the dispersal rate from the $i$-th to the $j$-th patch, and the conditional covariance of $X_{t+dt}^i-X_t^i$ and $X_{t+dt}^j-X_t^j$ is approximately $x^i x^j sigma_{ij}dt$. We show for such a spatially extended population that if $S_t=(X_t^1+...+X_t^n)$ is the total population abundance, then $Y_t=X_t/S_t$, the vector of patch proportions, converges in law to a random vector $Y_infty$ as $ttoinfty$, and the stochastic growth rate $lim_{ttoinfty}t^{-1}log S_t$ equals the space-time average per-capita growth rate $sum_imu_iE[Y_infty^i]$ experienced by the population minus half of the space-time average temporal variation $E[sum_{i,j}sigma_{ij}Y_infty^i Y_infty^j]$ experienced by the population. We derive analytic results for the law of $Y_infty$, find which choice of the dispersal mechanism $D$ produces an optimal stochastic growth rate for a freely dispersing population, and investigate the effect on the stochastic growth rate of constraints on dispersal rates. Our results provide fundamental insights into ideal free movement in the face of uncertainty, the persistence of coupled sink populations, the evolution of dispersal rates, and the single large or several small (SLOSS) debate in conservation biology.
Motivated by models of cancer formation in which cells need to acquire $k$ mutations to become cancerous, we consider a spatial population model in which the population is represented by the $d$-dimensional torus of side length $L$. Initially, no sites have mutations, but sites with $i-1$ mutations acquire an $i$th mutation at rate $mu_i$ per unit area. Mutations spread to neighboring sites at rate $alpha$, so that $t$ time units after a mutation, the region of individuals that have acquired the mutation will be a ball of radius $alpha t$. We calculate, for some ranges of the parameter values, the asymptotic distribution of the time required for some individual to acquire $k$ mutations. Our results, which build on previous work of Durrett, Foo, and Leder, are essentially complete when $k = 2$ and when $mu_i = mu$ for all $i$.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا