Do you want to publish a course? Click here

Network Structure Inference, A Survey: Motivations, Methods, and Applications

123   0   0.0 ( 0 )
 Added by Ivan Brugere
 Publication date 2016
and research's language is English




Ask ChatGPT about the research

Networks represent relationships between entities in many complex systems, spanning from online social interactions to biological cell development and brain connectivity. In many cases, relationships between entities are unambiguously known: are two users friends in a social network? Do two researchers collaborate on a published paper? Do two road segments in a transportation system intersect? These are directly observable in the system in question. In most cases, relationship between nodes are not directly observable and must be inferred: does one gene regulate the expression of another? Do two animals who physically co-locate have a social bond? Who infected whom in a disease outbreak in a population? Existing approaches for inferring networks from data are found across many application domains and use specialized knowledge to infer and measure the quality of inferred network for a specific task or hypothesis. However, current research lacks a rigorous methodology which employs standard statistical validation on inferred models. In this survey, we examine (1) how network representations are constructed from underlying data, (2) the variety of questions and tasks on these representations over several domains, and (3) validation strategies for measuring the inferred networks capability of answering questions on the system of interest.



rate research

Read More

449 - Xiao Wang , Deyu Bo , Chuan Shi 2020
Heterogeneous graphs (HGs) also known as heterogeneous information networks have become ubiquitous in real-world scenarios; therefore, HG embedding, which aims to learn representations in a lower-dimension space while preserving the heterogeneous structures and semantics for downstream tasks (e.g., node/graph classification, node clustering, link prediction), has drawn considerable attentions in recent years. In this survey, we perform a comprehensive review of the recent development on HG embedding methods and techniques. We first introduce the basic concepts of HG and discuss the unique challenges brought by the heterogeneity for HG embedding in comparison with homogeneous graph representation learning; and then we systemically survey and categorize the state-of-the-art HG embedding methods based on the information they used in the learning process to address the challenges posed by the HG heterogeneity. In particular, for each representative HG embedding method, we provide detailed introduction and further analyze its pros and cons; meanwhile, we also explore the transformativeness and applicability of different types of HG embedding methods in the real-world industrial environments for the first time. In addition, we further present several widely deployed systems that have demonstrated the success of HG embedding techniques in resolving real-world application problems with broader impacts. To facilitate future research and applications in this area, we also summarize the open-source code, existing graph learning platforms and benchmark datasets. Finally, we explore the additional issues and challenges of HG embedding and forecast the future research directions in this field.
Differential privacy is effective in sharing information and preserving privacy with a strong guarantee. As social network analysis has been extensively adopted in many applications, it opens a new arena for the application of differential privacy. In this article, we provide a comprehensive survey connecting the basic principles of differential privacy and applications in social network analysis. We present a concise review of the foundations of differential privacy and the major variants and discuss how differential privacy is applied to social network analysis, including privacy attacks in social networks, types of differential privacy in social network analysis, and a series of popular tasks, such as degree distribution analysis, subgraph counting and edge weights. We also discuss a series of challenges for future studies.
Most empirical studies of complex networks do not return direct, error-free measurements of network structure. Instead, they typically rely on indirect measurements that are often error-prone and unreliable. A fundamental problem in empirical network science is how to make the best possible estimates of network structure given such unreliable data. In this paper we describe a fully Bayesian method for reconstructing networks from observational data in any format, even when the data contain substantial measurement error and when the nature and magnitude of that error is unknown. The method is introduced through pedagogical case studies using real-world example networks, and specifically tailored to allow straightforward, computationally efficient implementation with a minimum of technical input. Computer code implementing the method is publicly available.
281 - Pengfei Jiao , Xuan Guo , Ting Pan 2021
Recently, Network Embedding (NE) has become one of the most attractive research topics in machine learning and data mining. NE approaches have achieved promising performance in various of graph mining tasks including link prediction and node clustering and classification. A wide variety of NE methods focus on the proximity of networks. They learn community-oriented embedding for each node, where the corresponding representations are similar if two nodes are closer to each other in the network. Meanwhile, there is another type of structural similarity, i.e., role-based similarity, which is usually complementary and completely different from the proximity. In order to preserve the role-based structural similarity, the problem of role-oriented NE is raised. However, compared to community-oriented NE problem, there are only a few role-oriented embedding approaches proposed recently. Although less explored, considering the importance of roles in analyzing networks and many applications that role-oriented NE can shed light on, it is necessary and timely to provide a comprehensive overview of existing role-oriented NE methods. In this review, we first clarify the differences between community-oriented and role-oriented network embedding. Afterwards, we propose a general framework for understanding role-oriented NE and a two-level categorization to better classify existing methods. Then, we select some representative methods according to the proposed categorization and briefly introduce them by discussing their motivation, development and differences. Moreover, we conduct comprehensive experiments to empirically evaluate these methods on a variety of role-related tasks including node classification and clustering (role discovery), top-k similarity search and visualization using some widely used synthetic and real-world datasets...
Since many real world networks are evolving over time, such as social networks and user-item networks, there are increasing research efforts on dynamic network embedding in recent years. They learn node representations from a sequence of evolving graphs but not only the latest network, for preserving both structural and temporal information from the dynamic networks. Due to the lack of comprehensive investigation of them, we give a survey of dynamic network embedding in this paper. Our survey inspects the data model, representation learning technique, evaluation and application of current related works and derives common patterns from them. Specifically, we present two basic data models, namely, discrete model and continuous model for dynamic networks. Correspondingly, we summarize two major categories of dynamic network embedding techniques, namely, structural-first and temporal-first that are adopted by most related works. Then we build a taxonomy that refines the category hierarchy by typical learning models. The popular experimental data sets and applications are also summarized. Lastly, we have a discussion of several distinct research topics in dynamic network embedding.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا