No Arabic abstract
We examine analytically and numerically a variant of the stochastic Kuramoto model for phase oscillators coupled on a general network. Two populations of phased oscillators are considered, labelled `Blue and `Red, each with their respective networks, internal and external couplings, natural frequencies, and frustration parameters in the dynamical interactions of the phases. We disentagle the different ways that additive Gaussian noise may influence the dynamics by applying it separately on zero modes or normal modes corresponding to a Laplacian decomposition for the sub-graphs for Blue and Red. Under the linearisation ansatz that the oscillators of each respective network remain relatively phase-sychronised centroids or clusters, we are able to obtain simple closed-form expressions using the Fokker-Planck approach for the dynamics of the average angle of the two centroids. In some cases, this leads to subtle effects of metastability that we may analytically describe using the theory of ratchet potentials. These considerations are extended to a regime where one of the populations has fragmented in two. The analytic expressions we derive largely predict the dynamics of the non-linear system seen in numerical simulation. In particular, we find that noise acting on a more tightly coupled population allows for improved synchronisation of the other population where deterministically it is fragmented.
The Kuramoto-Sakaguchi model for coupled phase oscillators with phase-frustration is often studied in the thermodynamic limit of infinitely many oscillators. Here we extend a model reduction method based on collective coordinates to capture the collective dynamics of finite size Kuramoto-Sakaguchi models. We find that the inclusion of the effects of rogue oscillators is essential to obtain an accurate description, in contrast to the original Kuramoto model where we show that their effects can be ignored. We further introduce a more accurate ansatz function to describe the shape of synchronized oscillators. Our results from this extended collective coordinate approach reduce in the thermodynamic limit to the well-known mean-field consistency relations. For finite networks we show that our model reduction describes the collective behavior accurately, reproducing the order parameter, the mean frequency of the synchronized cluster, and the size of the cluster at given coupling strength, as well as the critical coupling strength for partial and for global synchronization.
A new collective behavior of resonant synchronization is discovered and the ability to retrieve information from brain memory is proposed based on this mechanism. We use modified Kuramoto phase oscillator to simulate the dynamics of a single neuron in self-oscillation state, and investigate the collective responses of a neural network, which is composed of $N$ globally coupled Kuramoto oscillators, to the external stimulus signals in a critical state just below the synchronization threshold of Kuramoto model. The input signals at different driving frequencies, which are used to denote different neural stimuli, can drive the coupled oscillators into different synchronized groups locked to the same effective frequencies and recover different synchronized patterns emerged from their collective dynamics closely related to the predetermined frequency distributions of the oscillators (memory). This model is used to explain how brain stores and retrieves information by the synchronized patterns emerging in the neural network stimulated by the external inputs.
The Kuramoto model is a canonical model for understanding phase-locking phenomenon. It is well-understood that, in the usual mean-field scaling, full phase-locking is unlikely and that it is partially phase-locked states that are important in applications. Despite this, while there has been much attention given to the existence and stability of fully phase-locked states in the finite N Kuramoto model, the partially phase-locked states have received much less attention. In this paper, we present two related results. Firstly, we derive an analytical criterion that, for sufficiently strong coupling, guarantees the existence of a partially phase-locked state by proving the existence of an attracting ball around a fixed point of a subset of the oscillators. We also derive a larger invariant ball such that any point in it will asymptotically converge to the attracting ball. Secondly, we consider the large N (thermodynamic) limit for the Kuramoto system with randomly distributed frequencies. Using some results of De Smet and Aeyels on partial entrainment, we derive a deterministic condition giving almost sure existence of a partially entrained state for sufficiently strong coupling when the natural frequencies of the individual oscillators are independent identically distributed random variables, as well as upper and lower bounds on the size of the largest cluster of partially entrained oscillators. Interestingly in a series on numerical experiments we find that the observed size of the largest entrained cluster is predicted extremely well by the upper bound.
We study a variant of Kuramoto-Sakaguchi model in which oscillators are divided into two groups, each characterized by its coupling constant and phase lag. Specifically, we consider the case that one coupling constant is positive and the other negative, and calculate numerically the traveling speed of two clusters emerging in the system and average separation between them as well as the order parameters for positive and negative oscillators, as the two coupling constants, phase lags, and the fraction of positive oscillators are varied. An expression explaining the dependence of the traveling speed on these parameters is obtained and observed to fit well the numerical data. With the help of this, we describe the conditions for the traveling state to appear in the system.
We study the global bifurcations of frequency weighted Kuramoto model in low-dimension for network of fully connected oscillators. To study the effect of non-zero-centered frequency distribution, we consider two symmetric Lorentzians as an example. We derive the stability diagram of the system and show that the infinite-dimensional problem reduces to a flow in four dimensions. Using the system symmetries, it can be further reduced to two dimensions. Using this analytic framework, we obtain bifurcation boundaries of the system, which is compatible with our numeric simulations. We show that the system has three types of transitions to synchronized state for different parameters of the frequency distribution: (1) a two-step transition, representative of standing waves, (2) a continuous transition, as in the classical Kuramoto model, and (3) a first-order transition with hysteresis. Numerical simulations are also conducted to confirm analytic results.