No Arabic abstract
We analyze in this paper finite horizon hierarchical signaling games between (information provider) senders and (decision maker) receivers in a dynamic environment. The underlying information evolves in time while sender and receiver interact repeatedly. Different from the classical communication (control) models, however, the sender (sensor) and the receiver (controller) have different objectives and there is a hierarchy between the players such that the sender leads the game by announcing his policies beforehand. He needs to anticipate the reaction of the receiver and the impact of the actions on the horizon while controlling the transparency of the disclosed information at each interaction. With quadratic cost functions and multivariate Gaussian processes, evolving according to first order auto-regressive models, we show that memoryless linear sender signaling rules are optimal (in the sense of game-theoretic hierarchical equilibrium) within the general class of measurable policies in the noncooperative communication context. In the noncooperative control context, we also analyze the hierarchical equilibrium for linear signaling rules and provide an algorithm to compute the optimal linear signaling rules numerically with global optimality guarantees.
In some games, additional information hurts a player, e.g., in games with first-mover advantage, the second-mover is hurt by seeing the first-movers move. What properties of a game determine whether it has such negative value of information for a particular player? Can a game have negative value of information for all players? To answer such questions, we generalize the definition of marginal utility of a good to define the marginal utility of a parameter vector specifying a game. So rather than analyze the global structure of the relationship between a games parameter vector and player behavior, as in previous work, we focus on the local structure of that relationship. This allows us to prove that generically, every game can have negative marginal value of information, unless one imposes a priori constraints on allowed changes to the games parameter vector. We demonstrate these and related results numerically, and discuss their implications.
We adapt the method used by Jaynes to derive the equilibria of statistical physics to instead derive equilibria of bounded rational game theory. We analyze the dependence of these equilibria on the parameters of the underlying game, focusing on hysteresis effects. In particular, we show that by gradually imposing individual-specific tax rates on the players of the game, and then gradually removing those taxes, the players move from a poor equilibrium to one that is better for all of them.
In this paper we introduce a novel flow representation for finite games in strategic form. This representation allows us to develop a canonical direct sum decomposition of an arbitrary game into three components, which we refer to as the potential, harmonic and nonstrategic components. We analyze natural classes of games that are induced by this decomposition, and in particular, focus on games with no harmonic component and games with no potential component. We show that the first class corresponds to the well-known potential games. We refer to the second class of games as harmonic games, and study the structural and equilibrium properties of this new class of games. Intuitively, the potential component of a game captures interactions that can equivalently be represented as a common interest game, while the harmonic part represents the conflicts between the interests of the players. We make this intuition precise, by studying the properties of these two classes, and show that indeed they have quite distinct and remarkable characteristics. For instance, while finite potential games always have pure Nash equilibria, harmonic games generically never do. Moreover, we show that the nonstrategic component does not affect the equilibria of a game, but plays a fundamental role in their efficiency properties, thus decoupling the location of equilibria and their payoff-related properties. Exploiting the properties of the decomposition framework, we obtain explicit expressions for the projections of games onto the subspaces of potential and harmonic games. This enables an extension of the properties of potential and harmonic games to nearby games. We exemplify this point by showing that the set of approximate equilibria of an arbitrary game can be characterized through the equilibria of its projection onto the set of potential games.
Cooperative interval game is a cooperative game in which every coalition gets assigned some closed real interval. This models uncertainty about how much the members of a coalition get for cooperating together. In this paper we study convexity, core and the Shapley value of games with interval uncertainty. Our motivation to do so is twofold. First, we want to capture which properties are preserved when we generalize concepts from classical cooperative game theory to interval games. Second, since these generalizations can be done in different ways, mainly with regard to the resulting level of uncertainty, we try to compare them and show their relation to each other.
Network congestion games are a well-understood model of multi-agent strategic interactions. Despite their ubiquitous applications, it is not clear whether it is possible to design information structures to ameliorate the overall experience of the network users. We focus on Bayesian games with atomic players, where network vagaries are modeled via a (random) state of nature which determines the costs incurred by the players. A third-party entity---the sender---can observe the realized state of the network and exploit this additional information to send a signal to each player. A natural question is the following: is it possible for an informed sender to reduce the overall social cost via the strategic provision of information to players who update their beliefs rationally? The paper focuses on the problem of computing optimal ex ante persuasive signaling schemes, showing that symmetry is a crucial property for its solution. Indeed, we show that an optimal ex ante persuasive signaling scheme can be computed in polynomial time when players are symmetric and have affine cost functions. Moreover, the problem becomes NP-hard when players are asymmetric, even in non-Bayesian settings.