No Arabic abstract
In this note, I describe the space of vacua $mathcal{V}$ of four dimensional $mathcal{N}=4$ SYM on $mathbb{R}^4$ with gauge group a compact simple Lie Group $G$ as a stratified space. On each stratum, the low energy effective field theory is different. This language allows one to make precise the idea of moving in the space of vacua $mathcal{V}$. A particular subset of the strata of $mathcal{N}=4$ SYM can be efficiently described using the theory of sheets in a Lie algebra. For these strata, I study the conjectural action of S-duality. I also indicate some benefits of using such a language for the study of the available space of vacua $overline{mathcal{V}}$ on the boundary of GL twisted $mathcal{N}=4$ SYM on a half-space $mathbb{R}^3 times mathbb{R}^+$. As an application of boundary symmetry breaking, I indicate how a) the Local Nilpotent Cone arises as part of the available symmetry breaking choices on the boundary of the four dimensional theory and b) the Global Nilpotent Cone arises in the theory reduced down to two dimensions on a Riemann Surface $C$. These geometries play a critical role in the Local and Global Geometric Langlands Program(s).
We present $mathcal{N}=2$ superconformal $mathsf{U}(1)$ duality-invariant models for an Abelian vector multiplet coupled to conformal supergravity. In a Minkowski background, such a nonlinear theory is expected to describe (the planar part of) the low-energy effective action for the $mathcal{N}=4$ $mathsf{SU}(N)$ super-Yang-Mills (SYM) theory on its Coulomb branch where (i) the gauge group $mathsf{SU}(N)$ is spontaneously broken to $mathsf{SU}(N-1) times mathsf{U}(1)$; and (ii) the dynamics is captured by a single $mathcal{N}=2$ vector multiplet associated with the $mathsf{U}(1)$ factor of the unbroken group. Additionally, a local $mathsf{U}(1)$ duality-invariant action generating the $mathcal{N}=2$ super-Weyl anomaly is proposed. By providing a new derivation of the recently constructed $mathsf{U}(1)$ duality-invariant $mathcal{N}=1$ superconformal electrodynamics, we introduce its $mathsf{SL}(2,{mathbb R})$ duality-invariant coupling to the dilaton-axion multiplet.
Superconformal indices (SCIs) of 4d ${mathcal N}=4$ SYM theories with simple gauge groups are described in terms of elliptic hypergeometric integrals. For $F_4, E_6, E_7, E_8$ gauge groups this yields first examples of integrals of such type. S-duality transformation for G_2 and F_4 SCIs is equivalent to a change of integration variables. Equality of SCIs for SP(2N) and SO(2N+1) group theories is proved in several important special cases. Reduction of SCIs to partition functions of 3d $mathcal{N}=2$ SYM theories with one matter field in the adjoint representation is investigated, corresponding 3d dual partners are found, and some new related hyperbolic beta integrals are conjectured.
We find a family of complex saddle-points at large N of the matrix model for the superconformal index of SU(N) N=4 super Yang-Mills theory on $S^3 times S^1$ with one chemical potential $tau$. The saddle-point configurations are labelled by points $(m,n)$ on the lattice $Lambda_tau= mathbb{Z} tau +mathbb{Z}$ with $text{gcd}(m,n)=1$. The eigenvalues at a given saddle are uniformly distributed along a string winding $(m,n)$ times along the $(A,B)$ cycles of the torus $mathbb{C}/Lambda_tau$. The action of the matrix model extended to the torus is closely related to the Bloch-Wigner elliptic dilogarithm, and the related Bloch formula allows us to calculate the action at the saddle-points in terms of real-analytic Eisenstein series. The actions of $(0,1)$ and $(1,0)$ agree with that of pure AdS$_5$ and the supersymmetric AdS$_5$ black hole, respectively. The black hole saddle dominates the canonical ensemble when $tau$ is close to the origin, and there are new saddles that dominate when $tau$ approaches rational points. The extension of the action in terms of modular forms leads to a simple treatment of the Cardy-like limit $tauto 0$.
We consider supergravity theories with 16 supercharges in Minkowski space with dimensions $d>3$. We argue that there is an upper bound on the number of massless modes in such theories depending on $d$. In particular we show that the rank of the gauge symmetry group $G$ in $d$ dimensions is bounded by $r_Gleq 26-d$. This in particular demonstrates that 4 dimensional ${cal N}=4$ SYM theories with rank bigger than 22, despite being consistent and indeed finite before coupling to gravity, cannot be consistently coupled to ${cal N}=4$ supergravity in Minkowski space and belong to the swampland. Our argument is based on the swampland conditions of completeness of spectrum of defects as well as a strong form of the distance conjecture and relies on unitarity as well as supersymmetry of the worldsheet theory of BPS strings. The results are compatible with known string constructions and provide further evidence for the string lamppost principle (SLP): that string theory lamppost seems to capture ${it all}$ consistent quantum gravitational theories.
We study supersymmetric sectors at half-BPS boundaries and interfaces in the 4d $mathcal{N}=4$ super Yang-Mills with the gauge group $G$, which are described by associative algebras equipped with twisted traces. Such data are in one-to-one correspondence with an infinite set of defect correlation functions. We identify algebras and traces for known boundary conditions. Ward identities expressing the (twisted) periodicity of the trace highly constrain its structure, in many cases allowing for the complete solution. Our main examples in this paper are: the universal enveloping algebra $U(mathfrak{g})$ with the trace describing the Dirichlet boundary conditions; and the finite W-algebra $mathcal{W}(mathfrak{g},t_+)$ with the trace describing the Nahm pole boundary conditions.