Do you want to publish a course? Click here

BAT AGN Spectroscopic Survey-III. An observed link between AGN Eddington ratio and narrow emission line ratios

166   0   0.0 ( 0 )
 Added by Kyuseok Oh
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate the observed relationship between black hole mass ($M_{rm BH}$), bolometric luminosity ($L_{rm bol}$), and Eddington ratio (${lambda}_{rm Edd}$) with optical emission line ratios ([NII] {lambda}6583/H{alpha}, [SII] {lambda}{lambda}6716,6731/H{alpha}, [OI] {lambda}6300/H{alpha}, [OIII] {lambda}5007/H{beta}, [NeIII] {lambda}3869/H{beta}, and HeII {lambda}4686/H{beta}) of hard X-ray-selected AGN from the BAT AGN Spectroscopic Survey (BASS). We show that the [NII] {lambda}6583/H{alpha} ratio exhibits a significant correlation with ${lambda}_{rm Edd}$ ($R_{rm Pear}$ = -0.44, $p$-value=$3times10^{-13}$, {sigma} = 0.28 dex), and the correlation is not solely driven by $M_{rm BH}$ or $L_{rm bol}$. The observed correlation between [NII] {lambda}6583/H{alpha} ratio and $M_{rm BH}$ is stronger than the correlation with $L_{rm bol}$, but both are weaker than the ${lambda}_{rm Edd}$ correlation. This implies that the large-scale narrow lines of AGN host galaxies carry information about the accretion state of the AGN central engine. We propose that the [NII] {lambda}6583/H{alpha} is a useful indicator of Eddington ratio with 0.6 dex of rms scatter, and that it can be used to measure ${lambda}_{rm Edd}$ and thus $M_{rm BH}$ from the measured $L_{rm bol}$, even for high redshift obscured AGN. We briefly discuss possible physical mechanisms behind this correlation, such as the mass-metallicity relation, X-ray heating, and radiatively driven outflows.



rate research

Read More

131 - C. Ricci , L. C. Ho , A. C. Fabian 2018
The bulk of the X-ray emission in Active Galactic Nuclei (AGN) is produced very close to the accreting supermassive black hole (SMBH), in a corona of hot electrons which up scatters optical and ultraviolet photons from the accretion flow. The cutoff energy ($E_{rm C}$) of the primary X-ray continuum emission carries important information on the physical characteristics of the X-ray emitting plasma, but little is currently known about its potential relation with the properties of accreting SMBHs. Using the largest broad-band (0.3-150 keV) X-ray spectroscopic study available to date, we investigate how the corona is related to the AGN luminosity, black hole mass and Eddington ratio ($lambda_{rm Edd}$). Assuming a slab corona the median values of the temperature and optical depth of the Comptonizing plasma are $kT_{rm e}=105 pm 18$ keV and $tau=0.25pm0.06$, respectively. When we properly account for the large number of $E_{rm C}$ lower limits, we find a statistically significant dependence of the cutoff energy on the Eddington ratio. In particular, objects with $ lambda_{rm Edd}>0.1$ have a significantly lower median cutoff energy ($E_{rm C}=160pm41$ keV) than those with $lambda_{rm Edd}leq 0.1$ ($E_{rm C}=370pm51$ keV). This is consistent with the idea that radiatively compact coronae are also cooler, because they tend to avoid the region in the temperature-compactness parameter space where runaway pair production would dominate. We show that this behaviour could also straightforwardly explain the suggested positive correlation between the photon index ($Gamma$) and the Eddington ratio, being able to reproduce the observed slope of the $Gamma-lambda_{rm Edd}$ trend.
We explore the relationship between X-ray absorption and optical obscuration within the BAT AGN Spectroscopic Survey (BASS) which has been collecting and analyzing the optical and X-ray spectra for 641 hard X-ray selected ($E>14$ keV) active galactic nuclei (AGN). We use the deviation from a linear broad H$alpha$-to-X-ray relationship as an estimate of the maximum optical obscuration towards the broad line region and compare the $A_{rm V}$ to the hydrogen column densities ($N_{rm H}$) found through systematic modeling of their X-ray spectra. We find that the inferred columns implied by $A_{rm V}$ towards the broad line region (BLR) are often orders of magnitude less than the columns measured towards the X-ray emitting region indicating a small scale origin for the X-ray absorbing gas. After removing 30% of Sy 1.9s that potentially have been misclassified due to outflows, we find that 86% (164/190) of the Type 1 population (Sy 1--1.9) are X-ray unabsorbed as expected based on a single obscuring structure. However, 14% (26/190), of which 70% (18/26) are classified as Sy 1.9, are X-ray absorbed, suggesting the broad line region itself is providing extra obscuration towards the X-ray corona. The fraction of X-ray absorbed Type 1 AGN remains relatively constant with AGN luminosity and Eddington ratio, indicating a stable broad line region covering fraction.
We characterize the environments of local accreting supermassive black holes by measuring the clustering of AGN in the Swift/BAT Spectroscopic Survey (BASS). With 548 AGN in the redshift range 0.01<z<0.1 over the full sky from the DR1 catalog, BASS provides the largest, least biased sample of local AGN to date due to its hard X-ray selection (14-195 keV) and rich multiwavelength/ancillary data. By measuring the projected cross-correlation function between the AGN and 2MASS galaxies, and interpreting it via halo occupation distribution (HOD) and subhalo-based models, we constrain the occupation statistics of the full sample, as well as in bins of absorbing column density and black hole mass. We find that AGN tend to reside in galaxy group environments, in agreement with previous studies of AGN throughout a large range of luminosity and redshift, and that on average they occupy their dark matter halos similar to inactive galaxies of comparable stellar mass. We also find evidence that obscured AGN tend to reside in denser environments than unobscured AGN, even when samples were matched in luminosity, redshift, stellar mass, and Eddington ratio. We show that this can be explained either by significantly different halo occupation distributions or statistically different host halo assembly histories. Lastly, we see that massive black holes are slightly more likely to reside in central galaxies than black holes of smaller mass.
We present the host galaxy molecular gas properties of a sample of 213 nearby (0.01<z< 0.05) hard X-ray selected AGN galaxies, drawn from the 70-month catalog of Swift-BAT, with 200 new CO(2-1) line measurements obtained with the JCMT and APEX telescopes. We find that AGN in massive galaxies tend to have more molecular gas, and higher gas fractions, than inactive galaxies matched in stellar mass. When matched in star formation, we find AGN galaxies show no difference from inactive galaxies with no evidence of AGN feedback affecting the molecular gas. The higher molecular gas content is related to AGN galaxies hosting a population of gas-rich early types with an order of magnitude more molecular gas and a smaller fraction of quenched, passive galaxies (~5% vs. 49%). The likelihood of a given galaxy hosting an AGN (L_bol>10^44 erg/s) increases by ~10-100 between a molecular gas mass of 10^8.7 Msun and 10^10.2 Msun. Higher Eddington ratio AGN galaxies tend to have higher molecular gas masses and gas fractions. Higher column density AGN galaxies (Log NH>23.4) are associated with lower depletion timescales and may prefer hosts with more gas centrally concentrated in the bulge that may be more prone to quenching than galaxy wide molecular gas. The significant average link of host galaxy molecular gas supply to SMBH growth may naturally lead to the general correlations found between SMBHs and their host galaxies, such as the correlations between SMBH mass and bulge properties and the redshift evolution of star formation and SMBH growth.
The recently released 105-month {it Swift}-Burst Alert Telescope (BAT) all-sky hard X-ray survey catalog presents an opportunity to study astrophysical objects detected in the deepest look at the entire hard X-ray (14$-$195 keV) sky. Here we report the results of a multifrequency study of 146 blazars from this catalog, quadrupling the number compared to past studies, by utilizing recent data from the {it Fermi}-Large Area Telescope (LAT), Swift-BAT, and archival measurements. In our $gamma$-ray analysis of $sim$10 years of the LAT data, 101 are found as $gamma$-ray emitters, whereas, 45 remains LAT undetected. We model the broadband spectral energy distributions with a synchrotron-inverse Compton radiative model. On average, BAT detected sources host massive black holes ($M_{rm bh}sim10^9$ M$_{odot}$) and luminous accretion disks ($L_{rm d}sim10^{46}$ erg s$^{-1}$). At high-redshifts ($z>2$), BAT blazars host more powerful jets with luminous accretion disks compared to those detected only with the {it Fermi}-LAT. We find good agreement in the black hole masses derived from the single-epoch optical spectroscopic measurements and standard accretion disk modeling approaches. Other physical properties of BAT blazars are similar to those known for {it Fermi}-LAT detected objects.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا