Do you want to publish a course? Click here

NEWS: the near-infrared Echelle for wideband spectroscopy

51   0   0.0 ( 0 )
 Added by Mark Veyette
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present an updated optical and mechanical design of NEWS: the Near-infrared Echelle for Wide-band Spectroscopy (formerly called HiJaK: the High-resolution J, H and K spectrometer), a compact, high-resolution, near-infrared spectrometer for 5-meter class telescopes. NEWS provides a spectral resolution of 60,000 and covers the full 0.8-2.5 micron range in 5 modes. We adopt a compact, lightweight, monolithic design and developed NEWS to be mounted to the instrument cube at the Cassegrain focus of the the new 4.3-meter Discovery Channel Telescope.



rate research

Read More

133 - A. Eckart , K. Muzic , S. Yazici 2012
There are a number of faint compact infrared excess sources in the central stellar cluster of the Milky Way. Their nature and origin is unclear. In addition to several isolated objects of this kind we find a small but dense cluster of co-moving sources (IRS13N) about 3 west of SgrA* just 0.5 north of the bright IRS13E cluster of WR and O-type stars. Based on their color and brightness, there are two main possibilities: (1) they may be dust embedded stars older than few Myr, or (2) extremely young, dusty stars with ages less than 1Myr. We present fist H- and Ks-band identifications or proper motions of the IRS13N members, the high velocity dusty S-cluster object (DSO), and other infrared excess sources in the central field. We also present results of NIR H- and Ks-band ESO-SINFONI integral field spectroscopy of ISR13N. We show that within the uncertainties, the proper motions of the IRS13N sources in Ks- and L-band are identical. This indicates that the bright L-band IRS13N sources are indeed dust enshrouded stars rather than core-less dust clouds. The proper motions show that the IRS13N sources are not strongly gravitationally bound to each other implying that they have been formed recently. We also present a first H- and Ks-band identification as well as proper motions and HKsL-colors of a fast moving DSO which was recently found in the cluster of high speed S-stars that surround the super-massive black hole Sagittarius A* (SgrA*). Most of the compact L-band excess emission sources have a compact H- or Ks-band counterpart and therefore are likely stars with dust shells or disks. Our new results and orbital analysis from our previous work favor the hypothesis that the infrared excess IRS13N members and other dusty sources close to SgrA* are very young dusty stars and that star formation at the GC is a continuously ongoing process.
157 - F. Martins 2012
We study the near-infrared properties of the super star cluster NGC1750-1 in order to constrain its spatial extent, its stellar population and its age. We use adaptive optics assisted integral field spectroscopy with SINFONI on the VLT. We estimate the spatial extent of the cluster and extract its K-band spectrum from which we constrain the age of the dominant stellar population. Our observations have an angular resolution of about 0.11, providing an upper limit on the cluster radius of 2.85+/-0.50 pc depending on the assumed distance. The K-band spectrum is dominated by strong CO absorption bandheads typical of red supergiants. Its spectral type is equivalent to a K4-5I star. Using evolutionary tracks from the Geneva and Utrecht groups, we determine an age of 12+/-6 Myr. The large uncertainty is rooted in the large difference between the Geneva and Utrecht tracks in the red supergiants regime. The absence of ionized gas lines in the K-band spectrum is consistent with the absence of O and/or Wolf-Rayet stars in the cluster, as expected for the estimated age.
PEPSI is the bench-mounted, two-arm, fibre-fed and stabilized Potsdam Echelle Polarimetric and Spectroscopic Instrument for the 2x8.4 m Large Binocular Telescope (LBT). Three spectral resolutions of either 43 000, 120 000 or 270 000 can cover the entire optical/red wavelength range from 383 to 907 nm in three exposures. Two 10.3kx10.3k CCDs with 9-{mu}m pixels and peak quantum efficiencies of 96 % record a total of 92 echelle orders. We introduce a new variant of a wave-guide image slicer with 3, 5, and 7 slices and peak efficiencies between 96 %. A total of six cross dispersers cover the six wavelength settings of the spectrograph, two of them always simultaneously. These are made of a VPH-grating sandwiched by two prisms. The peak efficiency of the system, including the telescope, is 15% at 650 nm, and still 11% and 10% at 390 nm and 900 nm, respectively. In combination with the 110 m2 light-collecting capability of the LBT, we expect a limiting magnitude of 20th mag in V in the low-resolution mode. The R=120 000 mode can also be used with two, dual-beam Stokes IQUV polarimeters. The 270 000-mode is made possible with the 7-slice image slicer and a 100- {mu}m fibre through a projected sky aperture of 0.74, comparable to the median seeing of the LBT site. The 43000-mode with 12-pixel sampling per resolution element is our bad seeing or faint-object mode. Any of the three resolution modes can either be used with sky fibers for simultaneous sky exposures or with light from a stabilized Fabry-Perot etalon for ultra-precise radial velocities. CCD-image processing is performed with the dedicated data-reduction and analysis package PEPSI-S4S. A solar feed makes use of PEPSI during day time and a 500-m feed from the 1.8 m VATT can be used when the LBT is busy otherwise. In this paper, we present the basic instrument design, its realization, and its characteristics.
We describe the development of automated emission line detection software for the Fiber Multi-Object Spectrograph (FMOS), which is a near-infrared spectrograph fed by $400$ fibers from the $0.2$ deg$^2$ prime focus field of view of the Subaru Telescope. The software, FIELD (FMOS software for Image-based Emission Line Detection), is developed and tested mainly for the FastSound survey, which is targeting H$alpha$ emitting galaxies at $z sim 1.3$ to measure the redshift space distortion as a test of general relativity beyond $z sim 1$. The basic algorithm is to calculate the line signal-to-noise ratio ($S/N$) along the wavelength direction, given by a 2-D convolution of the spectral image and a detection kernel representing a typical emission line profile. A unique feature of FMOS is its use of OH airglow suppression masks, requiring the use of flat-field images to suppress noise around the mask regions. Bad pixels on the detectors and pixels affected by cosmic-rays are efficiently removed by using the information obtained from the FMOS analysis pipeline. We limit the range of acceptable line-shape parameters for the detected candidates to further improve the reliability of line detection. The final performance of line detection is tested using a subset of the FastSound data; the false detection rate of spurious objects is examined by using inverted frames obtained by exchanging object and sky frames. The false detection rate is $< 1$% at $S/N > 5$, allowing an efficient and objective emission line search for FMOS data at the line flux level of $gtrsim 1.0 times 10^{-16}$[erg/cm$^2$/s].
We present ten medium-resolution, high signal-to-noise ratio near-infrared (NIR) spectra of SN 2011fe from SpeX on the NASA Infrared Telescope Facility (IRTF) and Gemini Near-Infrared Spectrograph (GNIRS) on Gemini North, obtained as part of the Carnegie Supernova Project. This data set constitutes the earliest time-series NIR spectroscopy of a Type Ia supernova (SN Ia), with the first spectrum obtained at 2.58 days past the explosion and covering -14.6 to +17.3 days relative to B-band maximum. C I {lambda}1.0693 {mu}m is detected in SN 2011fe with increasing strength up to maximum light. The delay in the onset of the NIR C I line demonstrates its potential to be an effective tracer of unprocessed material. For the first time in a SN Ia, the early rapid decline of the Mg II {lambda}1.0927 {mu}m velocity was observed, and the subsequent velocity is remarkably constant. The Mg II velocity during this constant phase locates the inner edge of carbon burning and probes the conditions under which the transition from deflagration to detonation occurs. We show that the Mg II velocity does not correlate with the optical light-curve decline rate {Delta}m15. The prominent break at ~1.5 {mu}m is the main source of concern for NIR k-correction calculations. We demonstrate here that the feature has a uniform time evolution among SNe Ia, with the flux ratio across the break strongly correlated with {Delta}m15. The predictability of the strength and the onset of this feature suggests that the associated k-correction uncertainties can be minimized with improved spectral templates.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا