No Arabic abstract
We aim to study the standing fundamental kink mode of coronal loops in the nonlinear regime, investigating the changes in energy evolution in the cross-section and oscillation amplitude of the loop which are related to nonlinear effects, in particular to the development of the Kelvin-Helmholtz instability (KHI). We run idea, high-resolution three-dimensional (3D) magnetohydrodynamics (MHD) simulations, studying the influence of the initial velocity amplitude and the inhomogeneous layer thickness. We model the coronal loop as a straight, homogeneous magnetic flux tube with an outer inhomogeneous layer, embedded in a straight, homogeneous magnetic field. We find that, for low amplitudes which do not allow for the KHI to develop during the simulated time, the damping time agrees with the theory of resonant absorption. However, for higher amplitudes, the presence of KHI around the oscillating loop can alter the loops evolution, resulting in a significantly faster damping than predicted by the linear theory in some cases. This questions the accuracy of seismological methods applied to observed damping profiles, based on linear theory.
Magnetic twist is thought to play an important role in many structures of the solar atmosphere. One of the effects of twist is to modify the properties of the eigenmodes of magnetic tubes. In the linear regime standing kink solutions are characterized by a change in polarization of the transverse displacement along the twisted tube. In the nonlinear regime, magnetic twist affects the development of shear instabilities that appear at the tube boundary when it is oscillating laterally. These Kelvin-Helmholtz instabilities (KHI) are produced either by the jump in the azimuthal component of the velocity at the edge of the sharp boundary between the internal and external part of the tube, or either by the continuous small length-scales produced by phase-mixing when there is a smooth inhomogeneous layer. In this work the effect of twist is consistently investigated by solving the time-dependent problem including the process of energy transfer to the inhomogeneous layer. It is found that twist always delays the appearance of the shear instability but for tubes with thin inhomogeneous layers the effect is relatively small for moderate values of twist. On the contrary, for tubes with thick layers, the effect of twist is much stronger. This can have some important implications regarding observations of transverse kink modes and the KHI itself.
We investigate the nature of transverse kink oscillations of loops expanding through the solar corona and how can oscillations be used to diagnose the plasma parameters and the magnetic field. In particular, we aim to analyse how the temporal dependence of the loop length (here modelling the expansion) will affect the P1 /P2 period ratio of transverse loop oscillations. Due to the uncertainty of the loops shape through its expansion, we discuss separately the case of the loop that maintains its initial semi-circular shape and the case of the loop that from a semi-circular shape evolve into an elliptical shape loop. The equations that describe the oscillations in expanding flux tube are complicated due to the spatial and temporal dependence of coefficients. Using the WKB approximation we find approximative values for periods and their evolution, as well as the period ratio. For small values of time (near the start of the expansion) we can employ a regular perturbation method to find approximative relations for eigenfunctions and eigenfrequencies. Using simple analytical and numerical methods we show that the period of oscillations are affected by the rising of the coronal loop. The change in the period due to the increase in the loops length is more pronounced for those loops that expand into a more structured (or cooler corona). The deviation of periods will have significant implications in determining the degree of stratification in the solar corona. The effect of expansion on the periods of oscillations is considerable only in the process of expansion of the loop but not when it reached its final stage.
Recent observations with the Atmospheric Imaging Assembly (AIA) instrument on the SDO spacecraft have revealed the existence of decayless coronal kink oscillations. These transverse oscillations are not connected to any external phenomena like flares or coronal mass ejections, and show significantly lower amplitudes than the externally excited decaying oscillations. Numerical studies have managed to reproduce such decayless oscillations in the form of footpoint driven standing waves in coronal loops, and to treat them as a possible mechanism for wave heating of the solar corona. Our aim is to investigate the correlation between the observed amplitudes of the oscillations and input the energy flux from different drivers. We perform 3D MHD simulations in single, straight, density-enhanced coronal flux tubes for different drivers, in the presence of gravity. Synthetic images at different spectral lines are constructed with the use of the FoMo code. The development of the Kelvin-Helmholtz instability leads to mixing of plasma between the flux tube and the hot corona. Once the KHI is fully developed, the amplitudes of the decayless oscillations show only a weak correlation with the driver strength. We find that low amplitude decayless kink oscillations may correspond to significant energy fluxes of the order of the radiative losses for the Quiet Sun. A clear correlation between the input energy flux and the observed amplitudes from our synthetic imaging data cannot be established. Stronger drivers lead to higher vales of the line width estimated energy fluxes. Finally, estimations of the energy fluxes by spectroscopic data are affected by the LOS angle, favoring combined analysis of imaging and spectroscopic data for single oscillating loops.
Using full three-dimensional magnetohydrodynamic numerical simulations, we study the effects of magnetic field sigmoidity or helicity on the properties of the fundamental kink oscillation of solar coronal loops. Our model consists of a single denser coronal loop, embedded in a plasma with dipolar force-free magnetic field with a constant alpha-parameter. For the loop with no sigmoidity, we find that the numerically determined oscillation period of the fundamental kink mode matches the theoretical period calculated using WKB theory. In contrast, with increasing sigmoidity of the loop, the actual period is increasingly smaller than the one estimated by WKB theory. Translated through coronal seismology, increasing sigmoidity results in magnetic field estimates which are increasingly shifting towards higher values, and even surpassing the average value for the highest alpha value considered. Nevertheless, the estimated range of the coronal magnetic field value lies within the mimimal/maximal limits, proving the robustness coronal seismology. We propose that the discrepancy in the estimations of the absolute value of the force-free magnetic field could be exploited seismologically to determine the free energy of coronal loops, if averages of the internal magnetic field and density can be reliably estimated by other methods.
Context. QPPs are usually detected as spatial displacements of coronal loops in imaging observations or as periodic shifts of line properties in spectroscopic observations. They are often applied for remote diagnostics of magnetic fields and plasma properties on the Sun. Aims. We combine imaging and spectroscopic measurements of available space missions, and investigate the properties of non-damping oscillations at flaring loops. Methods. We used the IRIS to measure the spectrum over a narrow slit. The double-component Gaussian fitting method was used to extract the line profile of Fe XXI 1354.08 A at O I window. The quasi-periodicity of loop oscillations were identified in the Fourier and wavelet spectra. Results. A periodicity at about 40 s is detected in the line properties of Fe XXI, HXR emissions in GOES 1-8 A derivative, and Fermi 26-50 keV. The Doppler velocity and line width oscillate in phase, while a phase shift of about Pi/2 is detected between the Doppler velocity and peak intensity. The amplitudes of Doppler velocity and line width oscillation are about 2.2 km/s and 1.9 km/s, respectively, while peak intensity oscillate with amplitude at about 3.6% of the background emission. Meanwhile, a quasi-period of about 155 s is identified in the Doppler velocity and peak intensity of Fe XXI, and AIA 131 A intensity. Conclusions. The oscillations at about 40 s are not damped significantly during the observation, it might be linked to the global kink modes of flaring loops. The periodicity at about 155 s is most likely a signature of recurring downflows after chromospheric evaporation along flaring loops. The magnetic field strengths of the flaring loops are estimated to be about 120-170 G using the MHD seismology diagnostics, which are consistent with the magnetic field modeling results using the flux rope insertion method.