Do you want to publish a course? Click here

Study of the reflection spectrum of the LMXB 4U 1702-429

92   0   0.0 ( 0 )
 Added by Rosario Iaria
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

The source 4U 1702-429 (Ara X-1) is a low-mass X-ray binary system hosting a neutron star. Albeit the source is quite bright ( $sim10^{37}$ erg s$^{-1}$) its broadband spectrum has never been studied. Neither dips nor eclipses have been observed in the light curve suggesting that its inclination angle is smaller than 60$^{circ}$.We analysed the broadband spectrum of 4U 1702-429 in the 0.3-60 keV energy range, using XMM-Newton and INTEGRAL data, to constrain its Compton reflection component if it is present. After excluding the three time intervals in which three type-I X-ray bursts occurred, we fitted the joint XMM-Newton and INTEGRAL spectra obtained from simultaneous observations. A broad emission line at 6.7 keV and two absorption edges at 0.87 and 8.82 keV were detected. We found that a self-consistent reflection model fits the 0.3-60 keV spectrum well. The broadband continuum is composed of an emission component originating from the inner region of the accretion disc, a Comptonised direct emission coming from a corona with an electron temperature of $2.63 pm 0.06$ keV and an optical depth $tau=13.6 pm 0.2$, and, finally, a reflection component. The best-fit indicates that the broad emission line and the absorption edge at 8.82 keV, both associated with the presence of ion{Fe}{xxv} ions, are produced by reflection in the region above the disc with a ionisation parameter of $Log(xi) simeq 2.7$. We have inferred that the inner radius, where the broad emission line originates, is $64^{+52}_{-15}$ km, and the inner radius of the accretion disc is $39^{+6}_{-8}$ km. (Abridged)



rate research

Read More

Atoll sources are accreting neutron star (NS) low-mass X-ray binaries. We present a spectral analysis of four persistent atoll sources (GX 3+1, 4U 1702$-$429, 4U 0614+091, and 4U 1746$-$371) observed for $sim20$ ks each with NuSTAR to determine the extent of the inner accretion disk. These sources range from an apparent luminosity of $0.006-0.11$ of the Eddington limit (assuming the empirical limit of $3.8times10^{38}$ ergs s$^{-1}$). Broad Fe emission features shaped by Doppler and relativistic effects close to the NS were firmly detected in three of these sources. The position of the disk appears to be close to the innermost stable circular orbit (ISCO) in each case. For GX 3+1, we determine $R_{in}=1.8^{+0.2}_{-0.6} R_{mathrm{ISCO}}$ (90% confidence level) and an inclination of $27^{circ}-31^{circ}$. For 4U 1702$-$429, we find a $R_{in}=1.5_{-0.4}^{+1.6} R_{mathrm{ISCO}}$ and inclination of $53^{circ}-64^{circ}$. For 4U 0614+091, the disk has a position of $R_{in}=1.3_{-0.2}^{+5.4} R_{mathrm{ISCO}}$ and inclination of $50^{circ}-62^{circ}$. If the disk does not extend to the innermost stable circular orbit, we can place conservative limits on the magnetic field strength in these systems in the event that the disk is truncated at the Alfv{e}n radius. This provides the limit at the poles of $Bleq6.7times10^{8}$ G, $3.3times10^{8}$ G, and $14.5times10^{8}$ G for GX 3+1, 4U 1702$-$429, and 4U 0614+091, respectively. For 4U 1746$-$371, we argue that the most plausible explanation for the lack of reflection features is a combination of source geometry and strong Comptonization. We place these sources among the larger sample of NSs that have been observed with NuSTAR.
Most of the X-ray binary systems containing neutron stars classified as Atoll sources show two different spectral states, called soft and hard. Moreover, a large number of these systems show a reflection component relativistically smeared in their spectra, which gives information on the innermost region of the system. Our aim is to investigate the poorly studied broadband spectrum of the low mass X-ray binary system 4U 1702-429, which was recently analysed combining XMM-Newton and INTEGRAL data. The peculiar value of the reflection fraction brought us to analyse further broadband spectra of 4U 1702-429. We re-analysed the spectrum of the XMM-Newton/INTEGRAL observation of 4U 1702-429 in the 0.3-60 keV energy range and we extracted three 0.1-100 keV spectra of the source analysing three observations collected with the BeppoSAX satellite. We find that the XMM-Newton/INTEGRAL spectrum is well fitted using a model composed of a disc blackbody plus a Comptonised component and a smeared reflection component. We used the same spectral model for the BeppoSAX spectra, finding out that the addition of a smeared reflection component is statistically significant. The best-fit values of the parameters are compatible to each other for the BeppoSAX spectra. We find that the reflection fraction is $0.05^{+0.03}_{-0.01}$ for the XMM-Newton/INTEGRAL spectrum and between 0.15 and 0.4 for BeppoSAX ones. The relative reflection fraction and the ionisation parameter are incompatible between the XMM-Newton/INTEGRAL and the BeppoSAX observations and the characteristics of the Comptonising corona suggest that the source was in a soft state in the former observation and in a hard state in the latter.
We present 3-79 keV NuSTAR observations of the neutron star low-mass X-ray binary 4U 1636-53 in the soft, transitional and hard state. The spectra display a broad emission line at 5-10 keV. We applied several models to fit this line: A GAUSSIAN line, a relativistically broadened emission line model, KYRLINE, and two models including relativistically smeared and ionized reflection off the accretion disc with different coronal heights, RELXILL and RELXILLLP. All models fit the spectra well, however, the KYRLINE and RELXILL models yield an inclination of the accretion disc of $sim88degree$ with respect to the line of sight, which is at odds with the fact that this source shows no dips or eclipses. The RELXILLLP model, on the other hand, gives a reasonable inclination of $sim56degree$. We discuss our results for these models in this source and the possible primary source of the hard X-rays.
We report on a simultaneous NuSTAR and Swift observation of the neutron star low-mass X-ray binary 4U 1728-34. We identified and removed four Type I X-ray bursts during the observation in order to study the persistent emission. The continuum spectrum is hard and well described by a black body with $kT=$ 1.5 keV and a cutoff power law with $Gamma=$ 1.5 and a cutoff temperature of 25 keV. Residuals between 6 and 8 keV provide strong evidence of a broad Fe K$alpha$ line. By modeling the spectrum with a relativistically blurred reflection model, we find an upper limit for the inner disk radius of $R_{rm in}leq2 R_{rm ISCO}$. Consequently we find that $R_{rm NS}leq23$ km, assuming $M=1.4{mbox{$rm,M_{mathordodot}$}}$ and $a=0.15$. We also find an upper limit on the magnetic field of $Bleq2times10^8$ G.
Iron emission lines at 6.4-6.97 keV, identified with Kalpha radiative transitions, are among the strongest discrete features in the X-ray band. These are one of the most powerful probes to infer the properties of the plasma in the innermost part of the accretion disk around a compact object. In this paper we present a recent Suzaku observation, 100-ks effective exposure, of the atoll source and X-ray burster 4U 1705-44, where we clearly detect signatures of a reflection component which is distorted by the high-velocity motion in the accretion disk. The reflection component consists of a broad iron line at about 6.4 keV and a Compton bump at high X-ray energies, around 20 keV. All these features are consistently fitted with a reflection model, and we find that in the hard state the smearing parameters are remarkably similar to those found in a previous XMM-Newton observation performed in the soft state. In particular, we find that the inner disk radius is Rin = 17 +/- 5 Rg (where Rg is the Gravitational radius, GM/c^2), the emissivity dependence from the disk radius is -2.5 +/- 0.5, the inclination angle with respect to the line of sight is i = 43 +/- 5 degrees, and the outer radius of the emitting region in the disk is Rout > 200 Rg. We note that the accretion disk does not appear to be truncated at large radii, although the source is in a hard state at about 3 % of the Eddington luminosity for a neutron star. We also find evidence of a broad emission line at low energies, at 3.03 +/- 0.03 keV, compatible with emission from mildly ionized Argon (Ar XVI-XVII). Argon transitions are not included in the self-consistent reflection models that we used and we therefore added an extra component to our model to fit this feature. The low energy line appears compatible with being smeared by the same inner disk parameters found for the reflection component.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا