Do you want to publish a course? Click here

Affine Hecke algebras and quantum symmetric pairs

122   0   0.0 ( 0 )
 Added by Chun-Ju Lai
 Publication date 2016
  fields
and research's language is English




Ask ChatGPT about the research

We introduce an affine Schur algebra via the affine Hecke algebra associated to Weyl group of affine type C. We establish multiplication formulas on the affine Hecke algebra and affine Schur algebra. Then we construct monomial bases and canonical bases for the affine Schur algebra. The multiplication formula allows us to establish a stabilization property of the family of affine Schur algebras that leads to the modified version of an algebra ${mathbf K}^{mathfrak c}_n$. We show that ${mathbf K}^{mathfrak c}_n$ is a coideal subalgebra of quantum affine algebra ${bf U}(hat{mathfrak{gl}}_n)$, and $big({mathbf U}(hat{ mathfrak{gl}}_n), {mathbf K}^{mathfrak c}_n)$ forms a quantum symmetric pair. The modified coideal subalgebra is shown to admit monomial and stably canonical bases. We also formulate several variants of the affine Schur algebra and the (modified) coideal subalgebra above, as well as their monomial and canonical bases. This work provides a new and algebraic approach which complements and sheds new light on our previous geometric approach on the subject. In the appendix by four of the authors, new length formulas for the Weyl groups of affine classical types are obtained in a symmetrized fashion.



rate research

Read More

Let $W$ be a Coxeter group. The goal of the paper is to construct new Hopf algebras that contain Hecke algebras $H_{bf q}(W)$ as (left) coideal subalgebras. Our Hecke-Hopf algebras ${bf H}(W)$ have a number of applications. In particular they provide new solutions of quantum Yang-Baxter equation and lead to a construction of a new family of endo-functors of the category of $H_{bf q}(W)$-modules. Hecke-Hopf algebras for the symmetric group are related to Fomin-Kirillov algebras, for an arbitrary Coxeter group $W$ the Demazure part of ${bf H}(W)$ is being acted upon by generalized braided derivatives which generate the corresponding (generalized) Nichols algebra.
Let $U_q(mathfrak{g})$ be a twisted affine quantum group of type $A_{N}^{(2)}$ or $D_{N}^{(2)}$ and let $mathfrak{g}_{0}$ be the finite-dimensional simple Lie algebra of type $A_{N}$ or $D_{N}$. For a Dynkin quiver of type $mathfrak{g}_{0}$, we define a full subcategory ${mathcal C}_{Q}^{(2)}$ of the category of finite-dimensional integrable $U_q(mathfrak{g})$-modules, a twisted version of the category ${mathcal C}_{Q}$ introduced by Hernandez and Leclerc. Applying the general scheme of affine Schur-Weyl duality, we construct an exact faithful KLR-type duality functor ${mathcal F}_{Q}^{(2)}: Rep(R) rightarrow {mathcal C}_{Q}^{(2)}$, where $Rep(R)$ is the category of finite-dimensional modules over the quiver Hecke algebra $R$ of type $mathfrak{g}_{0}$ with nilpotent actions of the generators $x_k$. We show that ${mathcal F}_{Q}^{(2)}$ sends any simple object to a simple object and induces a ring isomorphism $K(Rep(R)) simeq K({mathcal C}_{Q}^{(2)})$.
We construct a model of the affine nil-Hecke algebra as a subalgebra of the Nichols-Woronowicz algebra associated to a Yetter-Drinfeld module over the affine Weyl group. We also discuss the Peterson isomorphism between the homology of the affine Grassmannian and the small quantum cohomology ring of the flag variety in terms of the braided differential calculus.
99 - Naihuan Jing , Ning Liu 2021
We use vertex operators to compute irreducible characters of the Iwahori-Hecke algebra of type $A$. Two general formulas are given for the irreducible characters in terms of those of the symmetric groups or the Iwahori-Hecke algebras in lower degrees. Explicit formulas are derived for the irreducible characters labeled by hooks and two-row partitions. Using duality, we also formulate a determinant type Murnaghan-Nakayama formula and give another proof of Rams combinatorial Murnaghan-Nakayama formula. As applications, we study super-characters of the Iwahori-Hecke algebra as well as the bitrace of the regular representation and provide a simple proof of the Halverson-Luduc-Ram formula.
83 - Alex J. Feingold 2002
This is an expository introduction to fusion rules for affine Kac-Moody algebras, with major focus on the algorithmic aspects of their computation and the relationship with tensor product decompositions. Many explicit examples are included with figures illustrating the rank 2 cases. New results relating fusion coefficients to tensor product coefficients are proved, and a conjecture is given which shows that the Frenkel-Zhu affine fusion rule theorem can be seen as a beautiful generalization of the Parasarathy-Ranga Rao-Varadarajan tensor product theorem. Previous work of the author and collaborators on a different approach to fusion rules from elementary group theory is also explained.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا