Do you want to publish a course? Click here

Phonon-limited electrical transport properties of intermetallic compound YbAl3 from first-principles calculations

67   0   0.0 ( 0 )
 Added by H.J. Liu
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We combine first-principles calculations and Boltzmann transport theory to study the electrical transport properties of intermetallic compound YbAl3. To accurately predict the electronic relaxation time, we use the density functional perturbation theory and Wannier interpolation techniques which can effectively treat the electron-phonon scattering. Our calculated transport coefficients of YbAl3 are in reasonable agreement with the experimentally measured results. Strikingly, we discover that in evaluating the Seebeck coefficient of YbAl3, the scattering term has a larger contribution than the band term and should be explicitly considered in the calculations, especially for the case with localized bands near the Fermi level. Moreover, we demonstrate that by reducing the sample size to less than ~30 nm, the electronic thermal conductivity of YbAl3 can be sufficiently suppressed so that the thermoelectric figure of merit can be further enhanced.



rate research

Read More

137 - Rui Wang , Shaofeng Wang , 2011
The phonon and thermodynamic properties of rare-earth-aluminum intermetallics AlRE (RE=Y, Gd, Pr, Yb) with B2-type structure are investigated by performing density functional theory and density functional perturbation theory within the quasiharmonic approximation. The phonon spectra and phonon density of states, including the phonon partial density of states and total density of states, have been discussed. Our results demonstrate that the density of states is mostly composed of Al states at the high frequency. The temperature dependence of various quantities such as the thermal expansions, the heat capacities at constant volume and constant pressure, the isothermal bulk modulus, and the entropy are obtained. The electronic contribution to the specific heat is discussed, and the presented results show that the thermal electronic excitation affecting the thermal properties is inessential.
186 - Rui Mao , Byoung Don Kong , 2014
Thermal transport properties at the metal/MoS2 interfaces are analyzed by using an atomistic phonon transport model based on the Landauer formalism and first-principles calculations. The considered structures include chemisorbed Sc(0001)/MoS2 and Ru(0001)/MoS2, physisorbed Au(111)/MoS2, as well as Pd(111)/MoS2 with intermediate characteristics. Calculated results illustrate a distinctive dependence of thermal transfer on the details of interfacial microstructures. More specifically, the chemisorbed case with a stronger bonding exhibits a generally smaller interfacial thermal resistance than the physisorbed. Comparison between metal/MoS2 and metal/graphene systems suggests that metal/MoS2 is significantly more resistive. Further examination of lattice dynamics identifies the presence of multiple distinct atomic planes and bonding patterns at the interface as the key origin of the observed large thermal resistance.
The bulk photovoltaic effect (BPVE) refers to current generation due to illumination by light in a homogeneous bulk material lacking inversion symmetry. In addition to the intensively studied shift current, the ballistic current, which originates from asymmetric carrier generation due to scattering processes, also constitutes an important contribution to the overall kinetic model of the BPVE. In this letter, we use a perturbative approach to derive a formula for the ballistic current resulting from the intrinsic electron-phonon scattering in a form amenable to first-principles calculation. We then implement the theory and calculate the ballistic current of the prototypical BPVE material ch{BaTiO3} using quantum-mechanical density functional theory. The magnitude of the ballistic current is comparable to that of shift current, and the total spectrum (shift plus ballistic) agrees well with the experimentally measured photocurrents. Furthermore, we show that the ballistic current is sensitive to structural change, which could benefit future photovoltaic materials design.
151 - Kangtai Sun , Zhibin Gao , 2021
Phonon Hall effect (PHE) has attracted a lot of attention in recent years with many theoretical and experimental explorations published. While experiments work on complicated materials, theoretical studies are still hovering around the phenomenon-based models. Moreover, previous microscopic theory was found unable to explain large thermal Hall conductivity obtained by experiments in strontium titanate (STO). Therefore, as a first attempt to bridge this gap, we implement first-principles calculations to explore the PHE in real materials. Our work provides a new benchmark of the PHE in sodium chloride (NaCl) under a large external magnetic field. Moreover, we demonstrate our results in barium titanate (BTO), and discuss the results in STO in detail about their deviation from experiments. As a possible future direction, we further propose that the inner electronic Berry curvature plays an important role in the PHE in STO.
We performed a systematic search for low-energy structures of binary iron silicide over a wide range of compositions using the crystal structure prediction method based on adaptive genetic algorithm. 36 structures with formation energies within 50 meV/atom (11 of them are within 20 meV) above the convex hull formed by experimentally known stable structures are predicted. Magnetic properties of these low-energy structures are investigated. Some of these structures can be promising candidates for rare-earth-free permanent magnet.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا