Matrix representations of frame and lifted-graphic matroids correspond to gain functions


Abstract in English

Let $M$ be a 3-connected matroid and let $mathbb F$ be a field. Let $A$ be a matrix over $mathbb F$ representing $M$ and let $(G,mathcal B)$ be a biased graph representing $M$. We characterize the relationship between $A$ and $(G,mathcal B)$, settling four conjectures of Zaslavsky. We show that for each matrix representation $A$ and each biased graph representation $(G,mathcal B)$ of $M$, $A$ is projectively equivalent to a canonical matrix representation arising from $G$ as a gain graph over $mathbb F^+$ or $mathbb F^times$. Further, we show that the projective equivalence classes of matrix representations of $M$ are in one-to-one correspondence with the switching equivalence classes of gain graphs arising from $(G,mathcal B)$.

Download