Do you want to publish a course? Click here

Clumpy and Extended Starbursts in the Brightest Unlensed Submillimeter Galaxies

62   0   0.0 ( 0 )
 Added by Daisuke Iono
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

The central structure in three of the brightest unlensed z=3-4 submillimeter galaxies are investigated through 0.015 - 0.05 (120 -- 360~pc) 860 micron continuum images obtained using the Atacama Large Millimeter/submillimeter Array (ALMA). The distribution in the central kpc in AzTEC1 and AzTEC8 are extremely complex, and they are composed of multiple ~200 pc clumps. AzTEC4 consists of two sources that are separated by ~1.5 kpc, indicating a mid-stage merger. The peak star formation rate densities in the central clumps are ~300 - 3000 Msun/yr/kpc^2, suggesting regions with extreme star formation near the Eddington Limit. By comparing the flux obtained by ALMA and Submillimeter Array (SMA), we find that 68-90% of the emission is extended (> 1 kpc) in AzTEC 4 and 8. For AzTEC1, we identify at least 11 additional compact (~200 pc) clumps in the extended 3 - 4 kpc region. Overall, the data presented here suggest that the luminosity surface densities observed at < 150 pc scales are roughly similar to that observed in local ULIRGs, as in the eastern nucleus of Arp 220. Between 10 to 30% of the 860 micron continuum is concentrated in clumpy structures in the central kpc while the remaining flux is distributed over > 1 kpc regions, some of which could also be clumpy. These sources can be explained by a rapid inflow of gas such as a merger of gas-rich galaxies, surrounded by extended and clumpy starbursts. However, the cold mode accretion model is not ruled out.



rate research

Read More

109 - Soh Ikarashi 2014
We report the source size distribution, as measured by ALMA millimetric continuum imaging, of a sample of 13 AzTEC-selected submillimeter galaxies (SMGs) at z_photo ~ 3-6. Their infrared luminosities and star-formation rates (SFR) are L_IR ~ 2-6 x 10^12 L_sun and ~ 200-600 M_sun yr-1, respectively. The size of z ~ 3-6 SMGs ranges from 0.10 to 0.38 with a median of 0.20+0.03-0.05 (FWHM), corresponding to a median circularized effective radius (Rc,e) of 0.67+0.13-0.14 kpc, comparable to the typical size of the stellar component measured in compact quiescent galaxies at z ~ 2 (cQGs) --- R ~ 1 kpc. The median surface SFR density of our z ~ 3-6 SMGs is 100+42-26 M_sun yr-1 kpc-2, comparable to that seen in local merger-driven (U)LIRGsrather than in extended disk galaxies at low and high redshifts. The discovery of compact starbursts in z >~ 3 SMGs strongly supports a massive galaxy formation scenario wherein z ~ 3-6 SMGs evolve into the compact stellar components of z ~ 2 cQGs. These cQGs are then thought to evolve into the most massive ellipticals in the local Universe, mostly via dry mergers. Our results thus suggest that z >~ 3 SMGs are the likely progenitors of massive local ellipticals, via cQGs, meaning that we can now trace the evolutionary path of the most massive galaxies over a period encompassing ~ 90% of the age of the Universe.
Although giant clumps of stars are crucial to galaxy formation and evolution, the most basic demographics of clumps are still uncertain, mainly because the definition of clumps has not been thoroughly discussed. In this paper, we study the basic demographics of clumps in star-forming galaxies (SFGs) at 0.5<z<3, using our proposed physical definition that UV-bright clumps are discrete star-forming regions that individually contribute more than 8% of the rest-frame UV light of their galaxies. Clumps defined this way are significantly brighter than the HII regions of nearby large spiral galaxies, either individually or blended, when physical spatial resolution and cosmological dimming are considered. Under this definition, we measure the fraction of SFGs that contain at least one off-center clump (Fclumpy) and the contributions of clumps to the rest-frame UV light and star formation rate of SFGs in the CANDELS/GOODS-S and UDS fields, where our mass-complete sample consists of 3239 galaxies with axial ratio q>0.5. The redshift evolution of Fclumpy changes with the stellar mass (M*) of the galaxies. Low-mass (log(M*/Msun)<9.8) galaxies keep an almost constant Fclumpy of about 60% from z~3.0 to z~0.5. Intermediate-mass and massive galaxies drop their Fclumpy from 55% at z~3.0 to 40% and 15%, respectively, at z~0.5. We find that (1) the trend of disk stabilization predicted by violent disk instability matches the Fclumpy trend of massive galaxies; (2) minor mergers are a viable explanation of the Fclumpy trend of intermediate-mass galaxies at z<1.5, given a realistic observability timescale; and (3) major mergers are unlikely responsible for the Fclumpy trend in all masses at z<1.5. The clump contribution to the rest-frame UV light of SFGs shows a broad peak around galaxies with log(M*/Msun)~10.5 at all redshifts, possibly linked to the molecular gas fraction of the galaxies. (Abridged)
We compare high-resolution optical and radio imaging of 12 luminous submm galaxies at z=2.2+/-0.2 observed with HST and the MERLIN and VLA at comparable spatial resolution, 0.3 (2kpc). The radio emission traces the likely far-infrared morphology of these dusty, luminous galaxies. In ~30% of the sample the radio appears unresolved, suggesting that the emission is compact: either an obscured AGN or nuclear starburst. However, in the majority, ~70% (8/12), the radio emission is resolved by MERLIN/VLA on scales of ~1 (10 kpc). For these galaxies the radio morphologies are broadly similar to their restframe UV emission seen by HST. We discuss the probable mechanisms for the extended emission and conclude that their luminous radio and submm emission arises from a large, spatially-extended starburst. The median SFRs are 1700Mo/yr occuring within a ~40kpc^2 region, giving a star formation density of 45Mo/yr/kpc^2. Such vigorous and extended starbursts appear to be uniquely associated with the submm population. A more detailed comparison of the distribution of UV and radio emission shows that the broad similarities on large scales are not carried through to smaller scales, where there is rarely a one-to-one correspondance. We interpret this as resulting from highly structured internal obscuration, suggesting that the vigorous activity is producing wind-blown channels through the obscuration in these galaxies. If correct this underlines the difficulty of using UV morphologies to understand structural properties of this population and also may explain the surprising frequency of Ly-alpha emission in their spectra. [Abridged]
We present the results of a survey of the brightest UV-selected galaxies in protoclusters. These proto-brightest cluster galaxy (proto-BCG) candidates are drawn from 179 overdense regions of $g$-dropout galaxies at $zsim4$ from the Hyper Suprime-Cam Subaru Strategic Program identified previously as good protocluster candidates. This study is the first to extend the systematic study of the progenitors of BCGs from $zsim2$ to $zsim4$. We carefully remove possible contaminants from foreground galaxies and, for each structure, we select the brightest galaxy that is at least 1 mag brighter than the fifth brightest galaxy. We select 63 proto-BCG candidates and compare their properties with those of galaxies in the field and those of other galaxies in overdense structures. The proto-BCG candidates and their surrounding galaxies have different rest-UV color $(i - z)$ distributions to field galaxies and other galaxies in protoclusters that do not host proto-BCGs. In addition, galaxies surrounding proto-BCGs are brighter than those in protoclusters without proto-BCGs. The image stacking analysis reveals that the average effective radius of proto-BCGs is $sim28%$ larger than that of field galaxies. The $i-z$ color differences suggest that proto-BCGs and their surrounding galaxies are dustier than other galaxies at $zsim4$. These results suggest that specific environmental effects or assembly biasses have already emerged in some protoclusters as early as $z sim 4$, and we suggest that proto-BCGs have different star formation histories than other galaxies in the same epoch.
260 - Tobias Buck 2016
Many massive star forming disc galaxies in the redshift range 3 to 0.5 are observed to have a clumpy morphology showing giant clumps of size $sim$1 kpc and masses of about $10^7M_{odot}$ to $10^{10} M_{odot}$. The nature and fate of these giant clumps is still under debate. In this work we use 19 high-resolution simulations of disc galaxies from the NIHAO sample to study the formation and the evolution of clumps in the discs of high redshift galaxies. We use mock HST - CANDELS observations created with the radiative transfer code GRASIL-3D to carry out, for the first time, a quantitative comparison of the observed fraction of clumpy galaxies and its evolution with redshift with simulations. We find a good agreement between the observed clumpy fraction and the one of the NIHAO galaxies. We find that dust attenuation can suppress intrinsically bright clumps and enhance less luminous ones. In our galaxy sample we only find clumps in light (u-band) from young stars but not in stellar mass surface density maps. This means that the NIHAO sample does not show clumpy stellar discs but rather a clumpy light distribution originating from clumpy star formation events. The clumps found in the NIHAO sample match observed age/color gradients as a function of distance from the galaxy center but they show no sign of inward migration. Clumps in our simulations disperse on timescales of a about a hundred Myr and their contribution to bulge growth is negligible.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا