Do you want to publish a course? Click here

Quantum Cloning of Binary Coherent States - Optimal Transformations and Practical Limits

84   0   0.0 ( 0 )
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

The notions of qubits and coherent states correspond to different physical systems and are described by specific formalisms. Qubits are associated with a two-dimensional Hilbert space and can be illustrated on the Bloch sphere. In contrast, the underlying Hilbert space of coherent states is infinite-dimensional and the states are typically represented in phase space. For the particular case of binary coherent state alphabets these otherwise distinct formalisms can equally be applied. We capitalize this formal connection to analyse the properties of optimally cloned binary coherent states. Several practical and near-optimal cloning schemes are discussed and the associated fidelities are compared to the performance of the optimal cloner.



rate research

Read More

269 - N.J. Cerf , O. Krueger , P. Navez 2004
We consider the optimal cloning of quantum coherent states with single-clone and joint fidelity as figures of merit. Both optimal fidelities are attained for phase space translation covariant cloners. Remarkably, the joint fidelity is maximized by a Gaussian cloner, whereas the single-clone fidelity can be enhanced by non-Gaussian operations: a symmetric non-Gaussian 1-to-2 cloner can achieve a single-clone fidelity of approximately 0.6826, perceivably higher than the optimal fidelity of 2/3 in a Gaussian setting. This optimal cloner can be realized by means of an optical parametric amplifier supplemented with a particular source of non-Gaussian bimodal states. Finally, we show that the single-clone fidelity of the optimal 1-to-infinity cloner, corresponding to a measure-and-prepare scheme, cannot exceed 1/2. This value is achieved by a Gaussian scheme and cannot be surpassed even with supplemental bound entangled states.
We present a scheme for implementing homomorphic encryption on coherent states encoded using phase-shift keys. The encryption operations require only rotations in phase space, which commute with computations in the codespace performed via passive linear optics, and with generalized non-linear phase operations that are polynomials of the photon-number operator in the codespace. This encoding scheme can thus be applied to any computation with coherent state inputs, and the computation proceeds via a combination of passive linear optics and generalized non-linear phase operations. An example of such a computation is matrix multiplication, whereby a vector representing coherent state amplitudes is multiplied by a matrix representing a linear optics network, yielding a new vector of coherent state amplitudes. By finding an orthogonal partitioning of the support of our encoded states, we quantify the security of our scheme via the indistinguishability of the encrypted codewords. Whilst we focus on coherent state encodings, we expect that this phase-key encoding technique could apply to any continuous-variable computation scheme where the phase-shift operator commutes with the computation.
We show that in the case of unknown {em harmonic oscillator coherent states} it is possible to achieve what we call {it perfect information cloning}. By this we mean that it is still possible to make arbitrary number of copies of a state which has {it exactly} the same information content as the original unknown coherent state. By making use of this {it perfect information cloning} it would be possible to estimate the original state through measurements and make arbitrary number of copies of the estimator. We define the notion of a {em Measurement Fidelity}. We show that this information cloning gives rise, in the case of $1to N$, to a {em distribution} of {em measurement fidelities} whose average value is ${1over 2}$ irrespective of the number of copies originally made. Generalisations of this to the $Mto MN$ case as well as the measurement fidelities for Gaussian cloners are also given.
We review our recent work on the universal (i.e. input state independent) optimal quantum copying (cloning) of qubits. We present unitary transformations which describe the optimal cloning of a qubit and we present the corresponding quantum logical network. We also present network for an optimal quantum copying ``machine (transformation) which produces N+1 identical copies from the original qubit. Here again the quality (fidelity) of the copies does not depend on the state of the original and is only a function of the number of copies, N. In addition, we present the machine which universaly and optimally clones states of quantum objects in arbitrary-dimensional Hilbert spaces. In particular, we discuss universal cloning of quantum registers.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا