No Arabic abstract
Increasing accessibility of data to researchers makes it possible to conduct massive amounts of statistical testing. Rather than follow a carefully crafted set of scientific hypotheses with statistical analysis, researchers can now test many possible relations and let P-values or other statistical summaries generate hypotheses for them. Genetic epidemiology field is an illustrative case in this paradigm shift. Driven by technological advances, testing a handful of genetic variants in relation to a health outcome has been abandoned in favor of agnostic screening of the entire genome, followed by selection of top hits, e.g., by selection of genetic variants with the smallest association P-values. At the same time, nearly total lack of replication of claimed associations that has been shaming the field turned to a flow of reports whose findings have been robustly replicating. Researchers may have adopted better statistical practices by learning from past failures, but we suggest that a steep increase in the amount of statistical testing itself is an important factor. Regardless of whether statistical significance has been reached, an increased number of tested hypotheses leads to enrichment of smallest P-values with genuine associations. In this study, we quantify how the expected proportion of genuine signals (EPGS) among top hits changes with an increasing number of tests. When the rate of occurrence of genuine signals does not decrease too sharply to zero as more tests are performed, the smallest P-values are increasingly more likely to represent genuine associations in studies with more tests.
Computer mediated conversations (e.g., videoconferencing) is now the new mainstream media. How would credibility be impacted if one could change their race on the fly in these environments? We propose an approach using Deepfakes and a supporting GAN architecture to isolate visual features and alter racial perception. We then crowd-sourced over 800 survey responses to measure how credibility was influenced by changing the perceived race. We evaluate the effect of showing a still image of a Black person versus a still image of a White person using the same audio clip for each survey. We also test the effect of showing either an original video or an altered video where the appearance of the person in the original video is modified to appear more White. We measure credibility as the percent of participant responses who believed the speaker was telling the truth. We found that changing the race of a person in a static image has negligible impact on credibility. However, the same manipulation of race on a video increases credibility significantly (61% to 73% with p $<$ 0.05). Furthermore, a VADER sentiment analysis over the free response survey questions reveals that more positive sentiment is used to justify the credibility of a White individual in a video.
Most people consider their friends to be more positive than themselves, exhibiting a Sentiment Paradox. Psychology research attributes this paradox to human cognition bias. With the goal to understand this phenomenon, we study sentiment paradoxes in social networks. Our work shows that social connections (friends, followees, or followers) of users are indeed (not just illusively) more positive than the users themselves. This is mostly due to positive users having more friends. We identify five sentiment paradoxes at different network levels ranging from triads to large-scale communities. Empirical and theoretical evidence are provided to validate the existence of such sentiment paradoxes. By investigating the relationships between the sentiment paradox and other well-developed network paradoxes, i.e., friendship paradox and activity paradox, we find that user sentiments are positively correlated to their number of friends but rarely to their social activity. Finally, we demonstrate how sentiment paradoxes can be used to predict user sentiments.
A fundamental challenge faced by existing Fine-Grained Sketch-Based Image Retrieval (FG-SBIR) models is the data scarcity -- model performances are largely bottlenecked by the lack of sketch-photo pairs. Whilst the number of photos can be easily scaled, each corresponding sketch still needs to be individually produced. In this paper, we aim to mitigate such an upper-bound on sketch data, and study whether unlabelled photos alone (of which they are many) can be cultivated for performances gain. In particular, we introduce a novel semi-supervised framework for cross-modal retrieval that can additionally leverage large-scale unlabelled photos to account for data scarcity. At the centre of our semi-supervision design is a sequential photo-to-sketch generation model that aims to generate paired sketches for unlabelled photos. Importantly, we further introduce a discriminator guided mechanism to guide against unfaithful generation, together with a distillation loss based regularizer to provide tolerance against noisy training samples. Last but not least, we treat generation and retrieval as two conjugate problems, where a joint learning procedure is devised for each module to mutually benefit from each other. Extensive experiments show that our semi-supervised model yields significant performance boost over the state-of-the-art supervised alternatives, as well as existing methods that can exploit unlabelled photos for FG-SBIR.
Existing reference (RF)-based super-resolution (SR) models try to improve perceptual quality in SR under the assumption of the availability of high-resolution RF images paired with low-resolution (LR) inputs at testing. As the RF images should be similar in terms of content, colors, contrast, etc. to the test image, this hinders the applicability in a real scenario. Other approaches to increase the perceptual quality of images, including perceptual loss and adversarial losses, tend to dramatically decrease fidelity to the ground-truth through significant decreases in PSNR/SSIM. Addressing both issues, we propose a simple yet universal approach to improve the perceptual quality of the HR prediction from a pre-trained SR network on a given LR input by further fine-tuning the SR network on a subset of images from the training dataset with similar patterns of activation as the initial HR prediction, with respect to the filters of a feature extractor. In particular, we show the effects of fine-tuning on these images in terms of the perceptual quality and PSNR/SSIM values. Contrary to perceptually driven approaches, we demonstrate that the fine-tuned network produces a HR prediction with both greater perceptual quality and minimal changes to the PSNR/SSIM with respect to the initial HR prediction. Further, we present novel numerical experiments concerning the filters of SR networks, where we show through filter correlation, that the filters of the fine-tuned network from our method are closer to ideal filters, than those of the baseline network or a network fine-tuned on random images.
Observed gonorrhea case rates (number of positive tests per 100,000 individuals) increased by 75 percent in the United States between 2009 and 2017, predominantly among men. However, testing recommendations by the Centers for Disease Control and Prevention (CDC) have also changed over this period with more frequent screening for sexually transmitted infections (STIs) recommended among men who have sex with men (MSM) who are sexually active. In this and similar disease surveillance settings, a common question is whether observed increases in the overall proportion of positive tests over time is due only to increased testing of diseased individuals, increased underlying disease or both. By placing this problem within a counterfactual framework, we can carefully consider untestable assumptions under which this question may be answered and, in turn, a principled approach to statistical analysis. This report outlines this thought process.