We have recently suggested that gas accretion can be studied using host galaxies of gamma-ray bursts (GRBs). We obtained the first ever far-infrared (FIR) line observations of a GRB host, namely Herschel/PACS resolved [CII] 158 um and [OI] 63 um spectroscopy, as well as APEX CO(2-1) and ALMA CO(1-0) observations of the GRB 980425 host. It has elevated [CII]/FIR and [OI]/FIR ratios and higher values of star formation rate (SFR) derived from line ([CII], [OI], Ha) than from continuum (UV, IR, radio) indicators. [CII] emission exhibits a normal morphology, peaking at the galaxy center, whereas [OI] is concentrated close to the GRB position and the nearby Wolf-Rayet region. The high [OI] flux indicates high radiation field and gas density. The [CII]/CO luminosity ratio of the GRB 980425 host is close to the highest values found for local star-forming galaxies. Its CO-derived molecular gas mass is low given its SFR and metallicity, but the [CII]-derived molecular gas mass is close to the expected value. The [OI] and HI concentrations, and the high radiation field and density are consistent with the hypothesis of a very recent (at most a few tens of Myr ago) inflow of atomic gas triggering star formation. Dust has not had time to build up (explaining high line-to-continuum ratios). Such a recent enhancement of star-formation would indeed manifest itself in high SFR_line/SFR_continuum ratios, because the line indicators are sensitive only to recent (<10 Myr) activity, whereas the continuum indicators measure the SFR averaged over much longer periods (~100 Myr). Other GRB hosts exhibit a mean SFR_line/SFR_continuum of 1.74+-0.32. This is consistent with a very recent enhancement of star formation being common among GRB hosts, so galaxies which have recently experienced inflow of gas may preferentially host stars exploding as GRBs. Hence GRB hosts may be used to investigate recent gas accretion.