No Arabic abstract
We present rest-frame optical spectra of 60 faint ($R_{AB}sim 27$; $Lsim0.1 L_*$) Ly$alpha$-selected galaxies (LAEs) at $zapprox2.56$. The average LAE is consistent with the extreme low-metallicity end of the continuum-selected galaxy distribution at $zapprox2-3$. In particular, the LAEs have extremely high [OIII] $lambda$5008/H$beta$ ratios (log([OIII]/H$beta$) $sim$ 0.8) and low [NII] $lambda$6585/H$alpha$ ratios (log([NII]/H$alpha$) $<-1.15$). Using the [OIII] $lambda$4364 auroral line, we find that the star-forming regions in faint LAEs are characterized by high electron temperatures ($T_eapprox1.8times10^4$K), low oxygen abundances (12 + log(O/H) $approx$ 8.04, $Z_{neb}approx0.22Z_odot$), and high excitations with respect to more luminous galaxies. Our faintest LAEs have line ratios consistent with even lower metallicities, including six with 12 + log(O/H) $approx$ 6.9$-$7.4 ($Z_{neb}approx0.02-0.05Z_odot$). We interpret these observations in light of new models of stellar evolution (including binary interactions). We find that strong, hard ionizing continua are required to reproduce our observed line ratios, suggesting that faint galaxies are efficient producers of ionizing photons and important analogs of reionization-era galaxies. Furthermore, we investigate physical trends accompanying Ly$alpha$ emission across the largest current sample of combined Ly$alpha$ and rest-optical galaxy spectroscopy, including 60 faint LAEs and 368 more luminous galaxies at similar redshifts. We find that Ly$alpha$ emission is strongly correlated with nebular excitation and ionization and weakly correlated with dust attenuation, suggesting that metallicity plays a strong role in determining the observed properties of these galaxies by modulating their stellar spectra, nebular excitation, and dust content.
We present deep rest-frame UV spectroscopic observations using the Gran Telescopio Canarias of six gravitationally lensed Lya emitters (LAEs) at $2.36<z<2.82$ selected from the BELLS GALLERY survey. By taking the magnifications into account, we show that LAEs can be as luminous as L(Lya) = 30x10$^{42}$ erg s-1 and M(UV) = -23 (AB) without invoking an AGN component, in contrast with previous findings. We measure Lya rest-frame equivalent widths, EW(Lya), ranging from 16AA to 50AA and Lya escape fractions, fesc(Lya), from 10% to 40%. Large EW(Lya) and fesc(Lya) are found predominantly in LAEs showing weak low-ionization ISM absorption (EW < 1AA) and narrow Lya profiles (< 300 km s-1 FWHM) with their peak close (< 80 km s-1) to their systemic redshifts, suggestive of less scatter from low HI column densities that favours the escape of Lya photons. We infer stellar metallicities of Z/Zsun ~ 0.2 in almost all LAEs by comparing the P-Cygni profiles of the wind lines NV1240AA and CIV1549AA with those from stellar synthesis models. We also find a trend between M(UV) and the velocity offset of ISM absorption lines, such as the most luminous LAEs experience stronger outflows. The most luminous LAEs show star formation rates up to 180 Msun yr-1, yet they appear relatively blue ($beta$(UV) ~ -1.8 to -2.0) showing evidence of little dust attenuation (E(B-V) = 0.10-0.14). These luminous LAEs may be particular cases of young starburst galaxies that have had no time to form large amounts of dust. If so, they are ideal laboratories to study the early phase of massive star formation, stellar and dust mass growth, and chemical enrichment histories of starburst galaxies at high-z.
In this work we model the observed evolution in comoving number density of Lyman-alpha blobs (LABs) as a function of redshift, and try to find which mechanism of emission is dominant in LAB. Our model calculates LAB emission both from cooling radiation from the intergalactic gas accreting onto galaxies and from star formation (SF). We have used dark matter (DM) cosmological simulation to which we applied empirical recipes for Ly$alpha$ emission produced by cooling radiation and SF in every halo. In difference to the previous work, the simulated volume in the DM simulation is large enough to produce an average LABs number density. At a range of redshifts $zsim 1-7$ we compare our results with the observed luminosity functions of LABs and LAEs. Our cooling radiation luminosities appeared to be too small to explain LAB luminosities at all redshifts. In contrast, for SF we obtained a good agreement with observed LFs at all redshifts studied. We also discuss uncertainties which could influence the obtained results, and how LAB LFs could be related to each other in fields with different density.
We study the average Ly$alpha$ emission associated with high-$z$ strong (log $N$(H I) $ge$ 21) damped Ly$alpha$ systems (DLAs). We report Ly$alpha$ luminosities ($L_{rm Lyalpha}$) for the full as well as various sub-samples based on $N$(H I), $z$, $(r-i)$ colours of QSOs and rest equivalent width of Si II$lambda$1526 line (i.e., $W_{1526}$). For the full sample, we find $L_{rm Lyalpha}$$< 10^{41} (3sigma) rm erg s^{-1}$ with a $2.8sigma$ level detection of Ly$alpha$ emission in the red part of the DLA trough. The $L_{rm Lyalpha}$ is found to be higher for systems with higher $W_{1526}$ with its peak, detected at $geq 3sigma$, redshifted by about 300-400 $rm km s^{-1}$ with respect to the systemic absorption redshift, as seen in Lyman Break Galaxies (LBGs) and Ly$alpha$ emitters. A clear signature of a double-hump Ly$alpha$ profile is seen when we consider $W_{1526} ge 0.4$ AA and $(r-i) < 0.05$. Based on the known correlation between metallicity and $W_{1526}$, we interpret our results in terms of star formation rate (SFR) being higher in high metallicity (mass) galaxies with high velocity fields that facilitates easy Ly$alpha$ escape. The measured Ly$alpha$ surface brightness requires local ionizing radiation that is 4 to 10 times stronger than the metagalactic UV background at these redshifts. The relationship between the SFR and surface mass density of atomic gas seen in DLAs is similar to that of local dwarf and metal poor galaxies. We show that the low luminosity galaxies will contribute appreciably to the stacked spectrum if the size-luminosity relation seen for H I at low-$z$ is also present at high-$z$. Alternatively, large Ly$alpha$ halos seen around LBGs could also explain our measurements.
In this series of lectures, I review our observational understanding of high-$z$ Ly$alpha$ emitters (LAEs) and relevant scientific topics. Since the discovery of LAEs in the late 1990s, more than ten (one) thousand(s) of LAEs have been identified photometrically (spectroscopically) at $zsim 0$ to $zsim 10$. These large samples of LAEs are useful to address two major astrophysical issues, galaxy formation and cosmic reionization. Statistical studies have revealed the general picture of LAEs physical properties: young stellar populations, remarkable luminosity function evolutions, compact morphologies, highly ionized inter-stellar media (ISM) with low metal/dust contents, low masses of dark-matter halos. Typical LAEs represent low-mass high-$z$ galaxies, high-$z$ analogs of dwarf galaxies, some of which are thought to be candidates of population III galaxies. These observational studies have also pinpointed rare bright Ly$alpha$ sources extended over $sim 10-100$ kpc, dubbed Ly$alpha$ blobs, whose physical origins are under debate. LAEs are used as probes of cosmic reionization history through the Ly$alpha$ damping wing absorption given by the neutral hydrogen of the inter-galactic medium (IGM), which complement the cosmic microwave background radiation and 21cm observations. The low-mass and highly-ionized population of LAEs can be major sources of cosmic reionization. The budget of ionizing photons for cosmic reionization has been constrained, although there remain large observational uncertainties in the parameters. Beyond galaxy formation and cosmic reionization, several new usages of LAEs for science frontiers have been suggested such as the distribution of {sc Hi} gas in the circum-galactic medium and filaments of large-scale structures. On-going programs and future telescope projects, such as JWST, ELTs, and SKA, will push the horizons of the science frontiers.
The distribution of Ly$alpha$ emission is an presently accessible method for studying the state of the intergalactic medium (IGM) into the reionization era. We carried out deep spectroscopic observations in order to search for Ly$alpha$ emission from galaxies with photometric redshifts $z$ = 5.5 - 8.3 selected from the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS). Utilizing data from the Keck/DEIMOS spectrograph, we explore a wavelength coverage of Ly$alpha$ emission at $z$ ~ 5 - 7 with four nights of spectroscopic observations for 118 galaxies, detecting five emission lines with ~ 5$sigma$ significance: three in the GOODS-N and two in the GOODS-S field. We constrain the equivalent width (EW) distribution of Ly$alpha$ emission by comparing the number of detected objects with the expected number constructed from detailed simulations of mock emission lines that account for the observational conditions (e.g., exposure time, wavelength coverage, and sky emission) and galaxy photometric redshift probability distribution functions. The Ly$alpha$ EW distribution is well described by an exponential form, $text{dN/dEW}propto text{exp(-EW/}W_0)$, characterized by the $e$-folding scale ($W_0$) of ~ 60 - 100$AA$ at 0.3 < $z$ < 6. By contrast, our measure of the Ly$alpha$ EW distribution at 6.0 < $z$ < 7.0 rejects a Ly$alpha$ EW distribution with $W_0$ > 36.4$AA$ (125.3$AA$) at 1$sigma$ (2$sigma$) significance. This provides additional evidence that the EW distribution of Ly$alpha$ declines at $z$ > 6, suggesting an increasing fraction of neutral hydrogen in the IGM at that epoch.