No Arabic abstract
In this paper, we study the productions of the newly detected states $D_{sJ}(3040)$ and $D_J(3000)$ observed by BABAR Collaboration and LHCb Collaboration. We assume these states to be the $D_s(2P)$ and $D(2P)$ states with the quantum number $J^P=1^+$ in our work. The results of improved Bethe-Salpeter method indicate that the semi-leptonic decays via $B_s$ and $B$ into $D_{sJ}(3040)$ and $D_J(3000)$ have considerable branching ratios, for example, Br($bar{B}_s^0 rightarrow D{_{sJ}^+}(3040)e^-bar{ u}{_e}$)=$5.79times10^{-4}$, Br($bar{B}^0rightarrow D_{J}^+(3000)e^-bar{ u}{_e}$)=$2.63times10^{-4}$, which shows that these semi-leptonic decays can be accessible in experiments.
In this paper, we systematically calculate two-body strong decays of newly observed $D_J(3000)$ and $D_{sJ}(3040)$ with 2P$(1^+)$ and 2P$(1^{+prime})$ assignments in an instantaneous approximation of the Bethe-Salpeter equation method. Our results show that both resonances can be explained as the 2P$(1^{+})$ with broad width via $^3P_1$ and $^1P_1$ mixing in $D$ and $D_s$ families. For $D_J(3000)$, the total width is 229.6 MeV in our calculation, close to the upper limit of experimental data, and the dominant decay channels are $D_2^*pi$, $D^*pi$, and $D^*(2600)pi$. For $D_{sJ}(3040)$, the total width is 157.4 MeV in our calculation, close to the lower limit of experimental data, and the dominant channels are $D^*K$ and $D^*K^*$. These results are consistent with observed channels in experiments. Given the very little information that has been obtained from experiments and the large error bars of the total decay widths, we recommend the detection of dominant channels in our calculation.
The resonance $D_{sJ}(2632)$ observed by SELEX, has attracted great interests and meanwhile brought up serious dispute. Its spin-parity, so far has not finally determined and if it exists, its quark-structure might be exotic. Following the previous literature where $D_{sJ}(2632)$ is assumed to be a radial-excited state of $1^-$, we consider the possibilities that it might be a $qbar q$ ground state of $2^+$ or the first radial-excited state of $0^+$ $D_{sJ}(2317)$ and re-calculate its strong decay widths in terms of the Bethe-Salpeter equation. Our results indicate that there still is a sharp discrepancy between the theoretical evaluation and data.
We propose a method for a QCD based calculation of one-particle inclusive decays of the form B to bar D X or B to bar D^* X. It is based on the heavy mass limit and a short distance expansion of the amplitudes, which yield a power series in the parameter 1/M^2_X for the spectra and in Lambda_QCD m_b/(m_b - m_c)^2 for the rates. We study the leading term of this expansion for the case of the semi--leptonic decays B to bar D X l^+ u.
The most recent measurements of the observables $R_{D^{(*)}}$ are in tension with the Standard Model offering hints of New Physics in $brightarrow c ell bar{ u}_{ell}$ transitions. Motivated by these results, in this work we present an analysis on their $brightarrow u ell bar{ u}_{ell}$ counterparts (for $ell=e, ~mu, ~tau$). Our study has three main objectives. Firstly, using ratios of branching fractions, we assess the effects of beyond the Standard Model scalar and pseudoscalar particles in leptonic and semileptonic $B$ decays ($B^-rightarrow ell^- bar{ u}_{ell}$, $bar{B}rightarrow pi ell bar{ u}_{ell}$ and $bar{B}rightarrow rho ell bar{ u}_{ell}$). Here a key role is played by the leptonic $B$ processes, which are highly sensitive to new pseudoscalar interactions. In particular, we take advantage of the most recent measurement of the branching fraction of the channel $B^-rightarrow mu^-bar{ u}_{mu}$ by the Belle collaboration. Secondly, we extract the CKM matrix element $|V_{ub}|$ while accounting simultaneously for New Physics contributions. Finally, we provide predictions for the branching fractions of yet unmeasured leptonic and semileptonic $B$ decays.
We report on form factors for the B->K l^+ l^- semi-leptonic decay process. We use several lattice spacings from a=0.12 fm down to 0.06 fm and a variety of dynamical quark masses with 2+1 flavors of asqtad quarks provided by the MILC Collaboration. These ensembles allow good control of the chiral and continuum extrapolations. The b-quark is treated as a clover quark with the Fermilab interpretation. We update our results for f_parallel and f_perp, or, equivalently, f_+ and f_0. In addition, we present new results for the tensor form factor f_T. Model independent results are obtained based upon the z-expansion.