A proposal for a minimal surface code experiment


Abstract in English

Current quantum technology is approaching the system sizes and fidelities required for quantum error correction. It is therefore important to determine exactly what is needed for proof-of-principle experiments, which will be the first major step towards fault-tolerant quantum computation. Here we propose a surface code based experiment that is the smallest, both in terms of code size and circuit depth, that would allow errors to be detected and corrected for both the $X$ and $Z$ basis of a qubit. This requires $17$ physical qubits initially prepared in a product state, on which $16$ two-qubit entangling gates are applied before a final measurement of all qubits. A platform agnostic error model is applied to give some idea of the noise levels required for success. It is found that a true demonstration of quantum error correction will require fidelities for the preparation and measurement of qubits and the entangling gates to be above $99%$.

Download