Computer simulations have become a very powerful tool for scientific research. In order to facilitate research in computational biology, the BioDynaMo project aims at a general platform for biological computer simulations, which should be executable on hybrid cloud computing systems. This paper describes challenges and lessons learnt during the early stages of the software development process, in the context of implementation issues and the international nature of the collaboration.
This paper is a brief update on developments in the BioDynaMo project, a new platform for computer simulations for biological research. We will discuss the new capabilities of the simulator, important new concepts simulation methodology as well as its numerous applications to the computational biology and nanoscience communities.
Computer simulations have become a very powerful tool for scientific research. Given the vast complexity that comes with many open scientific questions, a purely analytical or experimental approach is often not viable. For example, biological systems (such as the human brain) comprise an extremely complex organization and heterogeneous interactions across different spatial and temporal scales. In order to facilitate research on such problems, the BioDynaMo project (url{https://biodynamo.web.cern.ch/}) aims at a general platform for computer simulations for biological research. Since the scientific investigations require extensive computer resources, this platform should be executable on hybrid cloud computing systems, allowing for the efficient use of state-of-the-art computing technology. This paper describes challenges during the early stages of the software development process. In particular, we describe issues regarding the implementation and the highly interdisciplinary as well as international nature of the collaboration. Moreover, we explain the methodologies, the approach, and the lessons learnt by the team during these first stages.
As dataset sizes increase, data analysis tasks in high performance computing (HPC) are increasingly dependent on sophisticated dataflows and out-of-core methods for efficient system utilization. In addition, as HPC systems grow, memory access and data sharing are becoming performance bottlenecks. Cloud computing employs a data processing paradigm typically built on a loosely connected group of low-cost computing nodes without relying upon shared storage and/or memory. Apache Spark is a popular engine for large-scale data analysis in the cloud, which we have successfully deployed via job submission scripts on production clusters. In this paper, we describe common parallel analysis dataflows for both Message Passing Interface (MPI) and cloud based applications. We developed an effective benchmark to measure the performance characteristics of these tasks using both types of systems, specifically comparing MPI/C-based analyses with Spark. The benchmark is a data processing pipeline representative of a typical analytics framework implemented using map-reduce. In the case of Spark, we also consider whether language plays a role by writing tests using both Python and Scala, a language built on the Java Virtual Machine (JVM). We include performance results from two large systems at Argonne National Laboratory including Theta, a Cray XC40 supercomputer on which our experiments run with 65,536 cores (1024 nodes with 64 cores each). The results of our experiments are discussed in the context of their applicability to future HPC architectures. Beyond understanding performance, our work demonstrates that technologies such as Spark, while typically aimed at multi-tenant cloud-based environments, show promise for data analysis needs in a traditional clustering/supercomputing environment.
Large scale cloud services use Key Performance Indicators (KPIs) for tracking and monitoring performance. They usually have Service Level Objectives (SLOs) baked into the customer agreements which are tied to these KPIs. Dependency failures, code bugs, infrastructure failures, and other problems can cause performance regressions. It is critical to minimize the time and manual effort in diagnosing and triaging such issues to reduce customer impact. Large volume of logs and mixed type of attributes (categorical, continuous) in the logs makes diagnosis of regressions non-trivial. In this paper, we present the design, implementation and experience from building and deploying DeCaf, a system for automated diagnosis and triaging of KPI issues using service logs. It uses machine learning along with pattern mining to help service owners automatically root cause and triage performance issues. We present the learnings and results from case studies on two large scale cloud services in Microsoft where DeCaf successfully diagnosed 10 known and 31 unknown issues. DeCaf also automatically triages the identified issues by leveraging historical data. Our key insights are that for any such diagnosis tool to be effective in practice, it should a) scale to large volumes of service logs and attributes, b) support different types of KPIs and ranking functions, c) be integrated into the DevOps processes.
Motivation: Agent-based modeling is an indispensable tool for studying complex biological systems. However, existing simulators do not always take full advantage of modern hardware and often have a field-specific software design. Results: We present a novel simulation platform called BioDynaMo that alleviates both of these problems. BioDynaMo features a general-purpose and high-performance simulation engine. We demonstrate that BioDynaMo can be used to simulate use cases in: neuroscience, oncology, and epidemiology. For each use case we validate our findings with experimental data or an analytical solution. Our performance results show that BioDynaMo performs up to three orders of magnitude faster than the state-of-the-art baseline. This improvement makes it feasible to simulate each use case with one billion agents on a single server, showcasing the potential BioDynaMo has for computational biology research. Availability: BioDynaMo is an open-source project under the Apache 2.0 license and is available at www.biodynamo.org. Instructions to reproduce the results are available in supplementary information. Contact: [email protected], [email protected], [email protected], [email protected] Supplementary information: Available at https://doi.org/10.5281/zenodo.4501515
Lukas Breitwieser
,Roman Bauer
,Alberto Di Meglio
.
(2016)
.
"The BioDynaMo Project: Creating a Platform for Large-Scale Reproducible Biological Simulations"
.
Manuel Mazzara
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا