Do you want to publish a course? Click here

The Chemistry and Kinematics of Two Molecular Clouds near Sagittarius A*

117   0   0.0 ( 0 )
 Added by John Lopez
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have analysed the chemical and kinematic properties of the 20 and 50 km s$^{-1}$ molecular clouds in the Central Molecular Zone of the Milky Way Galaxy, as well as those of the molecular ridge bridging these two clouds. Our work has utilized 37 molecular transitions in the 0.65, 3 and 7-mm wavebands, from the Mopra and NANTEN2 telescopes. The 0.65-mm NANTEN2 data highlights a dense condensation of emission within the western part of the 20 km s$^{-1}$ cloud, visible in only four other transitions, which are 3-mm H$^{13}$CN (1--0), H$^{13}$CO$^{+}$ (1--0), HNC (1--0) and N$_{2}$H$^{+}$ (1--0), suggesting that the condensation is moderately optically thick and cold. We find that while the relative chemical abundances between both clouds are alike in many transitions, suggesting little variation in the chemistry between both clouds; the 20 km s$^{-1}$, cold cloud is brighter than the 50 km s$^{-1}$ cloud in shock and high density tracers. The spatial distribution of enhanced emission is widespread in the 20 km s$^{-1}$ cloud, as shown via line ratio maps. The position velocity diagrams across both clouds indicate that the gas is well mixed. We show that the molecular ridge is most likely part of the 20 km s$^{-1}$ cloud and that both of them may possibly extend to include the 50 km s$^{-1}$ cloud, as part of one larger cloud. Furthermore, we expect that the 20 km s$^{-1}$ cloud is being tidally sheared as a result of the gravitational potential from Sgr A*.



rate research

Read More

The evolution of molecular clouds in galactic centres is thought to differ from that in galactic discs due to a significant influence of the external gravitational potential. We present a set of numerical simulations of molecular clouds orbiting on the 100-pc stream of the Central Molecular Zone (the central $sim500$ pc of the Galaxy) and characterise their morphological and kinematic evolution in response to the background potential and eccentric orbital motion. We find that the clouds are shaped by strong shear and torques, by tidal and geometric deformation, and by their passage through the orbital pericentre. Within our simulations, these mechanisms control cloud sizes, aspect ratios, position angles, filamentary structure, column densities, velocity dispersions, line-of-sight velocity gradients, spin angular momenta, and kinematic complexity. By comparing these predictions to observations of clouds on the Galactic Centre dust ridge, we find that our simulations naturally reproduce a broad range of key observed morphological and kinematic features, which can be explained in terms of well-understood physical mechanisms. We argue that the accretion of gas clouds onto the central regions of galaxies, where the rotation curve turns over and the tidal field is fully compressive, is accompanied by transformative dynamical changes to the clouds, leading to collapse and star formation. This can generate an evolutionary progression of cloud collapse with a common starting point, which either marks the time of accretion onto the tidally-compressive region or of the most recent pericentre passage. Together, these processes may naturally produce the synchronised starbursts observed in numerous (extra)galactic nuclei.
148 - Evan N. Kirby 2016
We present Keck/DEIMOS spectroscopy of individual stars in the relatively isolated Local Group dwarf galaxies Leo A, Aquarius, and the Sagittarius dwarf irregular galaxy. The three galaxies--but especially Leo A and Aquarius--share in common delayed star formation histories relative to many other isolated dwarf galaxies. The stars in all three galaxies are supported by dispersion. We found no evidence of stellar velocity structure, even for Aquarius, which has rotating HI gas. The velocity dispersions indicate that all three galaxies are dark matter-dominated, with dark-to-baryonic mass ratios ranging from $4.4^{+1.1}_{-0.8}$ (SagDIG) to $9.6^{+2.5}_{-1.8}$ (Aquarius). Leo A and SagDIG have lower stellar metallicities than Aquarius, and they also have higher gas fractions, both of which would be expected if Aquarius were farther along in its chemical evolution. The metallicity distribution of Leo A is inconsistent with a Closed or Leaky Box model of chemical evolution, suggesting that the galaxy was pre-enriched or acquired external gas during star formation. The metallicities of stars increased steadily for all three galaxies, but possibly at different rates. The [$alpha$/Fe] ratios at a given [Fe/H] are lower than that of the Sculptor dwarf spheroidal galaxy, which indicates more extended star formation histories than Sculptor, consistent with photometrically derived star formation histories. Overall, the bulk kinematic and chemical properties for the late-forming dwarf galaxies do not diverge significantly from those of less delayed dwarf galaxies, including dwarf spheroidal galaxies.
131 - Catherine Walsh 2009
We have investigated the role of molecular anion chemistry in pseudo-time dependent chemical models of dark clouds. With oxygen-rich elemental abundances, the addition of anions results in a slight improvement in the overall agreement between model results and observations of molecular abundances in TMC-1 (CP). More importantly, with the inclusion of anions, we see an enhanced production efficiency of unsaturated carbon-chain neutral molecules, especially in the longer members of the families CnH, CnH2, and HCnN. The use of carbon-rich elemental abundances in models of TMC-1 (CP) with anion chemistry worsens the agreement with observations obtained in the absence of anions.
Astrochemistry lies at the nexus of astronomy, chemistry, and molecular physics. On the basis of precise laboratory data, a rich collection of more than 200 familiar and exotic molecules have been identified in the interstellar medium, the vast majority by their unique rotational fingerprint. Despite this large body of work, there is scant evidence in the radio band for the basic building blocks of chemistry on earth -- five and six-membered rings -- despite long standing and sustained efforts during the past 50 years. In contrast, a peculiar structural motif, highly unsaturated carbon in a chain-like arrangement, is instead quite common in space. The recent astronomical detection of cyanobenzene, the simplest aromatic nitrile, in the dark molecular cloud TMC-1, and soon afterwards in additional pre-stellar, and possibly protostellar sources, establishes that aromatic chemistry is likely widespread in the earliest stages of star formation. The subsequent discovery of cyanocyclopentadienes and even cyanonapthlenes in TMC-1 provides further evidence that organic molecules of considerable complexity are readily synthesized in regions with high visual extinction but where the low temperature and pressure are remarkably low. This review focuses on laboratory efforts now underway to understand the rich transition region between linear and planar carbon structures using microwave spectroscopy. We present key features, advantages, and disadvantages of current detection methods, a discussion of the types of molecules found in space and in the laboratory, and approaches under development to identify entirely new species in complex mixtures. Studies focusing on the cyanation of hydrocarbons and the formation of benzene from acyclic precursors are highlighted, as is the role that isotopic studies might play in elucidating the chemical pathways to ring formation.
403 - David A. Neufeld 2016
We present a general parameter study, in which the abundance of interstellar argonium (ArH$^+$) is predicted using a model for the physics and chemistry of diffuse interstellar gas clouds. Results have been obtained as a function of UV radiation field, cosmic-ray ionization rate, and cloud extinction. No single set of cloud parameters provides an acceptable fit to the typical ArH$^+$, OH$^+$ and $rm H_2O^+$ abundances observed in diffuse clouds within the Galactic disk. Instead, the observed abundances suggest that ArH$^+$ resides primarily in a separate population of small clouds of total visual extinction of at most 0.02 mag per cloud, within which the column-averaged molecular fraction is in the range $10^{-5} - 10^{-2}$, while OH$^+$ and $rm H_2O^+$ reside primarily in somewhat larger clouds with a column-averaged molecular fraction $sim 0.2$. This analysis confirms our previous suggestion that the argonium molecular ion is a unique tracer of almost purely atomic gas.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا