No Arabic abstract
Placing bright sub-millimetre galaxies (SMGs) within the broader context of galaxy formation and evolution requires accurate measurements of their clustering, which can constrain the masses of their host dark matter halos. Recent work has shown that the clustering measurements of these galaxies may be affected by a `blending bias, which results in the angular correlation function of the sources extracted from single-dish imaging surveys being boosted relative to that of the underlying galaxies. This is due to confusion introduced by the coarse angular resolution of the single-dish telescope and could lead to the inferred halo masses being significantly overestimated. We investigate the extent to which this bias affects the measurement of the correlation function of SMGs when it is derived via a cross-correlation with a more abundant galaxy population. We find that the blending bias is essentially the same as in the auto-correlation case and conclude that the best way to reduce its effects is to calculate the angular correlation function using SMGs in narrow redshift bins. Blending bias causes the inferred host halo masses of the SMGs to be overestimated by a factor of $sim6$ when a redshift interval of $delta z=3$ is used. However, this reduces to a factor of $sim2$ for $delta z=0.5$. The broadening of photometric redshift probability distributions with increasing redshift can therefore impart a mild halo `downsizing effect onto the inferred host halo masses, though this trend is not as strong as seen in recent observational studies.
It is widely reported, based on clustering measurements of observed active galactic nuclei (AGN) samples, that AGN reside in similar mass host dark matter halos across the bulk of cosmic time, with log $M/M_odot$~12.5-13.0 to z~2.5. We show that this is due in part to the AGN fraction in galaxies rising with increasing stellar mass, combined with AGN observational selection effects that exacerbate this trend. Here, we use AGN specific accretion rate distribution functions determined as a function of stellar mass and redshift for star-forming and quiescent galaxies separately, combined with the latest galaxy-halo connection models, to determine the parent and sub-halo mass distribution function of AGN to various observational limits. We find that while the median (sub-)halo mass of AGN, $approx10^{12}M_odot$, is fairly constant with luminosity, specific accretion rate, and redshift, the full halo mass distribution function is broad, spanning several orders of magnitude. We show that widely used methods to infer a typical dark matter halo mass based on an observed AGN clustering amplitude can result in biased, systematically high host halo masses. While the AGN satellite fraction rises with increasing parent halo mass, we find that the central galaxy is often not an AGN. Our results elucidate the physical causes for the apparent uniformity of AGN host halos across cosmic time and underscore the importance of accounting for AGN selection biases when interpreting observational AGN clustering results. We further show that AGN clustering is most easily interpreted in terms of the relative bias to galaxy samples, not from absolute bias measurements alone.
We study the environment of 23 submillimetre galaxies (SMGs) drawn from the JCMT/AzTEC 1.1mm S/N-limited sample in the COSMOS field, as well as 4 COSMOS SMGs at z_spec>4.5, and 1 at z_spec=2.49, yielding a sample of 28 SMGs. We search for overdensities using the COSMOS photometric redshifts based on over 30 UV-NIR photometric bands, reaching an accuracy of sigma(Delta z/(1+z))=0.0067 (0.0155) at z<3.5 (>3.5). To identify overdensities we apply the Voronoi tessellation analysis, and estimate the overdensity estimator delta_g as a function of distance from the SMG and/or overdensity center. We test and validate our approach via simulations, X-ray detected groups, and spectroscopic verifications using VUDS and zCOSMOS catalogues showing that even with photometric redshifts in COSMOS we can efficiently retrieve overdensities out to z~5. Our results yield that 11/23 (48%) JCMT/AzTEC 1.1mm SMGs occupy overdense environments. Considering the entire JCMT/AzTEC 1.1mm S/N>4 sample, and accounting for the expected fraction of spurious detections, yields that 35-61% of the SMGs in the S/N-limited sample occupy overdense environments. We perform an X-ray stacking analysis in the 0.5-2keV band using a 32 aperture and our SMG positions, and find statistically significant detections. For our z<2 [z>2] subsample we find an average flux of (4.0+/-0.8)x10^{-16} [(1.3+/-0.5)x10^{-16}] erg/s/cm^2 and a corresponding total mass of M_200 = 2.8x10^{13} [2x10^{13}] MSol. Our results suggest a higher occurrence of SMGs occupying overdense environments at z>3, than at z<3. This may be understood if highly star forming galaxies can only be formed in the highest peaks of the density field tracing the most massive dark matter haloes at early cosmic epochs, while at later times cosmic structure may have matured sufficiently that more modest overdensities correspond to sufficiently massive haloes to form SMGs.
We use galaxy-galaxy lensing to study the dark matter halos surrounding a sample of Locally Brightest Galaxies (LBGs) selected from the Sloan Digital Sky Survey. We measure mean halo mass as a function of the stellar mass and colour of the central galaxy. Mock catalogues constructed from semi-analytic galaxy formation simulations demonstrate that most LBGs are the central objects of their halos, greatly reducing interpretation uncertainties due to satellite contributions to the lensing signal. Over the full stellar mass range, $10.3 < log [M_*/M_odot] < 11.6$, we find that passive central galaxies have halos that are at least twice as massive as those of star-forming objects of the same stellar mass. The significance of this effect exceeds $3sigma$ for $log [M_*/M_odot] > 10.7$. Tests using the mock catalogues and on the data themselves clarify the effects of LBG selection and show that it cannot artificially induce a systematic dependence of halo mass on LBG colour. The bimodality in halo mass at fixed stellar mass is reproduced by the astrophysical model underlying our mock catalogue, but the sign of the effect is inconsistent with recent, nearly parameter-free age-matching models. The sign and magnitude of the effect can, however, be reproduced by halo occupation distribution models with a simple (few-parameter) prescription for type-dependence.
The study of the magnification bias produced on high-redshift sub-millimetre galaxies by foreground galaxies through the analysis of the cross-correlation function was recently demonstrated as an interesting independent alternative to the weak-lensing shear as a cosmological probe. In the case of the proposed observable, most of the cosmological constraints mainly depend on the largest angular separation measurements. Therefore, we aim to study and correct the main large-scale biases that affect foreground and background galaxy samples to produce a robust estimation of the cross-correlation function. Then we analyse the corrected signal to derive updated cosmological constraintsWe measured the large-scale, bias-corrected cross-correlation functions using a background sample of H-ATLAS galaxies with photometric redshifts > 1.2 and two different foreground samples (GAMA galaxies with spectroscopic redshifts or SDSS galaxies with photometric ones, both in the range 0.2 < z < 0.8). These measurements are modelled using the traditional halo model description that depends on both halo occupation distribution and cosmological parameters. We then estimated these parameters by performing a Markov chain Monte Carlo under multiple scenarios to study the performance of this observable and how to improve its results. After the large-scale bias corrections, we obtain only minor improvements with respect to the previous magnification bias results, mainly confirming their conclusions: a lower bound on $Omega_m > 0.22$ at $95%$ C.L. and an upper bound $sigma_8 < 0.97$ at $95%$ C.L. (results from the $z_{spec}$ sample). However, by combining both foreground samples into a simplified tomographic analysis, we were able to obtain interesting constraints on the $Omega_m$-$sigma_8$ plane as follows: $Omega_m= 0.50_{- 0.20}^{+ 0.14}$ and $sigma_8= 0.75_{- 0.10}^{+ 0.07}$ at 68% CL.
We calculate the dispersion measures (DMs) contributed by host galaxies of fast radio bursts (FRBs). Based on a few host galaxy observations, a large sample of galaxy with similar properties to observed ones has been selected from the IllustrisTNG simulation. They are used to compute the distributions of host galaxy DMs for repeating and non-repeating FRBs. For repeating FRBs, we infer the DM$ _{mathrm{host}} $ for FRBs like FRB 121102 and FRB 180916 by assuming that the burst sites are tracing the star formation rates in host galaxies. The median DM$_{mathrm{host}}$ are $35 (1+z)^{1.08}$ and $96(1+z)^{0.83}$ pc cm$^{-3}$ for FRBs like FRB 121102 and FRB 180916, respectively. In another case, the median of DM$_{mathrm{host}}$ is about $30 - 70$ pc cm$^{-3}$ for non-repeating FRBs in the redshift range $z=0.1-1.5$, assuming that the burst sites are the locations of binary neutron star mergers. In this case, the evolution of the median DM$_{mathrm{host}}$ can be calculated by $33(1+z)^{0.84}$ pc cm$^{-3}$. The distributions of DM$_{mathrm{host}}$ of repeating and non-repeating FRBs can be well fitted with the log-normal function. Our results can be used to infer redshifts of non-localized FRBs.