Do you want to publish a course? Click here

On the Relation of Schatten Norms and the Thompson Metric

88   0   0.0 ( 0 )
 Added by David Snyder
 Publication date 2016
  fields
and research's language is English




Ask ChatGPT about the research

The Thompson metric provides key geometric insights in the study or non-linear matrix equations and in many optimization problems. However, knowing that an approximate solution is within d_T units of the actual solution in the Thompson metric provides little insight into how good the approximation is as a matrix or vector approximation. That is, bounding the Thompson metric between an approximate and accurate solution to a problem does not provide obvious bounds either for the spectral or the Frobenius norm, both Schatten norms, of the difference between the approximation and accurate solution. This paper reports an upper bound on the Schatten norm of X - Y related to both the Thompson metric between X and Y and the maximum of their Schatten norms. This paper reports a similar but slightly tighter bound for the Frobenius norm of X - Y.



rate research

Read More

164 - Jianbing Cao , Yifeng Xue 2013
In this paper, the problems of perturbation and expression for the Moore--Penrose metric generalized inverses of bounded linear operators on Banach spaces are further studied. By means of certain geometric assumptions of Banach spaces, we first give some equivalent conditions for the Moore--Penrose metric generalized inverse of perturbed operator to have the simplest expression $T^M(I+ delta TT^M)^{-1}$. Then, as an application our results, we investigate the stability of some operator equations in Banach spaces under different type perturbations.
172 - Zhijie Fan , Michael Lacey , Ji Li 2021
We establish the necessary and sufficient conditions for those symbols $b$ on the Heisenberg group $mathbb H^{n}$ for which the commutator with the Riesz transform is of Schatten class. Our main result generalises classical results of Peller, Janson--Wolff and Rochberg--Semmes, which address the same question in the Euclidean setting. Moreover, the approach that we develop bypasses the use of Fourier analysis, and can be applied to characterise that the commutator is of the Schatten class in other settings beyond Euclidean.
Various norms can be defined on a Krein space by choosing different underlying fundamental decompositions. Some estimates of norms on Krein spaces are discussed and few results in Bognars paper are generalized.
85 - C. Morosi 2000
We consider the Sobolev norms of the pointwise product of two functions, and estimate from above and below the constants appearing in two related inequalities.
201 - Jordi Pau 2015
We completely characterize the simultaneous membership in the Schatten ideals $S_ p$, $0<p<infty$ of the Hankel operators $H_ f$ and $H_{bar{f}}$ on the Bergman space, in terms of the behaviour of a local mean oscillation function, proving a conjecture of Kehe Zhu from 1991.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا