When Sets Can and Cannot Have MSTD Subsets


Abstract in English

A finite set of integers $A$ is a sum-dominant (also called an More Sums Than Differences or MSTD) set if $|A+A| > |A-A|$. While almost all subsets of ${0, dots, n}$ are not sum-dominant, interestingly a small positive percentage are. We explore sufficient conditions on infinite sets of positive integers such that there are either no sum-dominant subsets, at most finitely many sum-dominant subsets, or infinitely many sum-dominant subsets. In particular, we prove no subset of the Fibonacci numbers is a sum-dominant set, establish conditions such that solutions to a recurrence relation have only finitely many sum-dominant subsets, and show there are infinitely many sum-dominant subsets of the primes.

Download