Do you want to publish a course? Click here

Protected couplings and BPS dyons in half-maximal supersymmetric string vacua

54   0   0.0 ( 0 )
 Added by Boris Pioline
 Publication date 2016
  fields
and research's language is English




Ask ChatGPT about the research

We analyze four- and six-derivative couplings in the low energy effective action of $D=3$ string vacua with half-maximal supersymmetry. In analogy with an earlier proposal for the $( ablaPhi)^4$ coupling, we propose that the $ abla^2( ablaPhi)^4$ coupling is given exactly by a manifestly U-duality invariant genus-two modular integral. In the limit where a circle in the internal torus decompactifies, the $ abla^2( ablaPhi)^4$ coupling reduces to the $D^2 F^4$ and $R^2 F^2$ couplings in $D=4$, along with an infinite series of corrections of order $e^{-R}$, from four-dimensional 1/4-BPS dyons whose wordline winds around the circle. Each of these contributions is weighted by a Fourier coefficient of a meromorphic Siegel modular form, explaining and extending standard results for the BPS index of 1/4-BPS dyons.



rate research

Read More

Three-dimensional string models with half-maximal supersymmetry are believed to be invariant under a large U-duality group which unifies the S and T dualities in four dimensions. We propose an exact, U-duality invariant formula for four-derivative scalar couplings of the form $F(Phi) ( ablaPhi)^4$ in a class of string vacua known as CHL $mathbb{Z}_N$ heterotic orbifolds with $N$ prime, generalizing our previous work which dealt with the case of heterotic string on $T^6$. We derive the Ward identities that $F(Phi)$ must satisfy, and check that our formula obeys them. We analyze the weak coupling expansion of $F(Phi)$, and show that it reproduces the correct tree-level and one-loop contributions, plus an infinite series of non-perturbative contributions. Similarly, the large radius expansion reproduces the exact $F^4$ coupling in four dimensions, including both supersymmetric invariants, plus infinite series of instanton corrections from half-BPS dyons winding around the large circle, and from Taub-NUT instantons. The summation measure for dyonic instantons agrees with the helicity supertrace for half-BPS dyons in 4 dimensions in all charge sectors. In the process we clarify several subtleties about CHL models in $D=4$ and $D=3$, in particular we obtain the exact helicity supertraces for 1/2-BPS dyonic states in all duality orbits.
We propose a new mechanism for obtaining de Sitter vacua in type IIB string theory compactified on (orientifolded) Calabi-Yau manifolds similar to those recently studied by Kachru, Kallosh, Linde and Trivedi (KKLT). dS vacuum appears in KKLT model after uplifting an AdS vacuum by adding an anti-D3-brane, which explicitly breaks supersymmetry. We accomplish the same goal by adding fluxes of gauge fields within the D7-branes, which induce a D-term potential in the effective 4D action. In this way we obtain dS space as a spontaneously broken vacuum from a purely supersymmetric 4D action. We argue that our approach can be directly extended to heterotic string vacua, with the dilaton potential obtained from a combination of gaugino condensation and the D-terms generated by anomalous U(1) gauge groups.
Using the duality between color and kinematics, we construct two-loop four-point scattering amplitudes in $mathcal{N}=2$ super-Yang-Mills (SYM) theory coupled to $N_f$ fundamental hypermultiplets. Our results are valid in $Dle 6$ dimensions, where the upper bound corresponds to six-dimensional chiral $mathcal{N}=(1,0)$ SYM theory. By exploiting a close connection with $mathcal{N}=4$ SYM theory - and, equivalently, six-dimensional $mathcal{N}=(1,1)$ SYM theory - we find compact integrands with four-dimensional external vectors in both the maximally-helicity-violating (MHV) and all-chiral-vector sectors. Via the double-copy construction corresponding $D$-dimensional half-maximal supergravity amplitudes with external graviton multiplets are obtained in the MHV and all-chiral sectors. Appropriately tuning $N_f$ enables us to consider both pure and matter-coupled supergravity, with arbitrary numbers of vector multiplets in $D=4$. As a bonus, we obtain the integrands of the genuinely six-dimensional supergravities with $mathcal{N}=(1,1)$ and $mathcal{N}=(2,0)$ supersymmetry. Finally, we extract the potential ultraviolet divergence of half-maximal supergravity in $D=5-2epsilon$ and show that it non-trivially cancels out as expected.
The heterotic--string models in the free fermionic formulation gave rise to some of the most realistic string models to date, which possess N=1 spacetime supersymmetry. Lack of evidence for supersymmetry at the LHC instigated recent interest in non-supersymmetric heterotic-string vacua. We explore what may be learned in this context from the quasi--realistic free fermionic models. We show that constructions with a low number of families give rise to proliferation of a priori tachyon producing sectors, compared to the non--realistic examples, which typically may contain only one such sector. The reason being that in the realistic cases the internal six dimensional space is fragmented into smaller units. We present one example of a quasi--realistic, non--supersymmetric, non--tachyonic, heterotic--string vacuum and compare the structure of its massless spectrum to the corresponding supersymmetric vacuum. While in some sectors supersymmetry is broken explicitly, i.e. the bosonic and fermionic sectors produce massless and massive states, other sectors, and in particular those leading to the chiral families, continue to exhibit fermi-bose degeneracy. In these sectors the massless spectrum, as compared to the supersymmetric cases, will only differ in some local or global U(1) charges. We discuss the conditions for obtaining $n_b=n_f$ at the massless level in these models. Our example model contains an anomalous U(1) symmetry, which generates a tadpole diagram at one loop-order in string perturbation theory. We speculate that this tadpole diagram may cancel the corresponding diagram generated by the one-loop non-vanishing vacuum energy and that in this respect the supersymmetric and non-supersymmetric vacua should be regarded on equal footing. Finally we discuss vacua that contain two supersymmetry generating sectors.
295 - C. Angelantonj , E. Dudas 2007
We argue that tachyon-free type I string vacua with supersymmetry breaking in the open sector at the string scale can be interpreted, via S and T-duality arguments, as metastable vacua of supersymmetric type I superstring. The dynamics of the process can be partially captured via nucleation of brane-antibrane pairs out of the non-supersymmetric vacuum and subsequent tachyon condensation.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا