Do you want to publish a course? Click here

Transport and Optical Conductivity in the Hubbard Model: A High-Temperature Expansion Perspective

66   0   0.0 ( 0 )
 Added by Edward Perepelitsky
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We derive analytical expressions for the spectral moments of the dynamical response functions of the Hubbard model using the high-temperature series expansion. We consider generic dimension $d$ as well as the infinite-$d$ limit, arbitrary electron density $n$, and both finite and infinite repulsion $U$. We use moment-reconstruction methods to obtain the one-electron spectral function, the self-energy, and the optical conductivity. They are all smooth functions at high-temperature and, at large-$U$, they are featureless with characteristic widths of order the lattice hopping parameter $t$. In the infinite-$d$ limit we compare the series expansion results with accurate numerical renormalization group and interaction expansion quantum Monte-Carlo results. We find excellent agreement down to surprisingly low temperatures, throughout most of the bad-metal regime which applies for $T gtrsim (1-n)D$, the Brinkman-Rice scale. The resistivity increases linearly in $T$ at high-temperature without saturation. This results from the $1/T$ behaviour of the compressibility or kinetic energy, which play the role of the effective carrier number. In contrast, the scattering time (or diffusion constant) saturate at high-$T$. We find that $sigma(n,T) approx (1-n)sigma(n=0,T)$ to a very good approximation for all $n$, with $sigma(n=0,T)propto t/T$ at high temperatures. The saturation at small $n$ occurs due to a compensation between the density-dependence of the effective number of carriers and that of the scattering time. The $T$-dependence of the resistivity displays a knee-like feature which signals a cross-over to the intermediate-temperature regime where the diffusion constant (or scattering time) start increasing with decreasing $T$. At high-temperatures, the thermopower obeys the Heikes formula, while the Wiedemann-Franz law is violated with the Lorenz number vanishing as $1/T^2$.



rate research

Read More

63 - C. Karrasch 2016
One of the most straightforward ways to study thermal properties beyond linear response is to monitor the relaxation of an arbitrarily large left-right temperature gradient $T_L-T_R$. In one-dimensional systems which support ballistic thermal transport, the local energy currents $langle j(t)rangle$ acquire a non-zero value at long times, and it was recently investigated whether or not this steady state fulfills a simple additive relation $langle j(ttoinfty)rangle=f(T_L)-f(T_R)$ in integrable models. In this paper, we probe the non-equilibrium dynamics of the Hubbard chain using density matrix renormalization group (DMRG) numerics. We show that the above form provides an effective description of thermal transport in this model; violations are below the finite-time accuracy of the DMRG. As a second setup, we study how an initially equilibrated system radiates into different non-thermal states (such as the vacuum).
We study the charge conductivity of the one-dimensional repulsive Hubbard model at finite temperature using the method of dynamical quantum typicality, focusing at half filling. This numerical approach allows us to obtain current autocorrelation functions from systems with as many as 18 sites, way beyond the range of standard exact diagonalization. Our data clearly suggest that the charge Drude weight vanishes with a power law as a function of system size. The low-frequency dependence of the conductivity is consistent with a finite dc value and thus with diffusion, despite large finite-size effects. Furthermore, we consider the mass-imbalanced Hubbard model for which the charge Drude weight decays exponentially with system size, as expected for a non-integrable model. We analyze the conductivity and diffusion constant as a function of the mass imbalance and we observe that the conductivity of the lighter component decreases exponentially fast with the mass-imbalance ratio. While in the extreme limit of immobile heavy particles, the Falicov-Kimball model, there is an effective Anderson-localization mechanism leading to a vanishing conductivity of the lighter species, we resolve finite conductivities for an inverse mass ratio of $eta gtrsim 0.25$.
We study the spin diffusion and spin conductivity in the square lattice Hubbard model by using the finite-temperature Lanczos method. We show that the spin diffusion behaves differently from the charge diffusion and has a nonmonotonic $T$ dependence. This is due to a progressive liberation of charges that contribute to spin transport and enhance it beyond that active at low temperature due to the Heisenberg exchange. We further show that going away from half-filling and zero magnetization increases the spin diffusion, but that the increase is insufficient to reconcile the difference between the model calculations and the recent measurements on cold-atoms.
We study finite-temperature transport properties of the one-dimensional Hubbard model using the density matrix renormalization group. Our aim is two-fold: First, we compute both the charge and the spin current correlation function of the integrable model at half filling. The former decays rapidly, implying that the corresponding Drude weight is either zero or very small. Second, we calculate the optical charge conductivity sigma(omega) in presence of small integrability-breaking next-nearest neighbor interactions (the extended Hubbard model). The DC conductivity is finite and diverges as the temperature is decreased below the gap. Our results thus suggest that the half-filled, gapped Hubbard model is a normal charge conductor at finite temperatures. As a testbed for our numerics, we compute sigma(omega) for the integrable XXZ spin chain in its gapped phase.
A systematic diagrammatic expansion for Gutzwiller-wave functions (DE-GWF) is formulated and used for the description of superconducting (SC) ground state in the two-dimensional Hubbard model with electron-transfer amplitudes t (and t) between nearest (and next-nearest) neighbors. The method is numerically very efficient and allows for a detailed analysis of the phase diagram as a function of all relevant parameters (U, delta, t) and a determination of the kinetic-energy driven pairing region. SC states appear only for substantial interactions, U/t > 3, and for not too large hole doping, delta < 0.32 for t = 0.25 t; this upper critical doping value agrees well with experiment for the cuprate high-temperature superconductors. We also obtain other important features of the SC state: (i) the SC gap at the Fermi surface resembles $d_{x^2-y^2}$-wave only around the optimal doping and the corrections to this state are shown to arise from the longer range of the pairing; (ii) the nodal Fermi velocity is almost constant as a function of doping and agrees quantitatively with the experimental results; (iii) the SC transition is driven by the kinetic-energy lowering for low doping and strong interactions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا