Do you want to publish a course? Click here

Unified Maximally Natural Supersymmetry

134   0   0.0 ( 0 )
 Added by Junwu Huang
 Publication date 2016
  fields
and research's language is English




Ask ChatGPT about the research

Maximally Natural Supersymmetry, an unusual weak-scale supersymmetric extension of the Standard Model based upon the inherently higher-dimensional mechanism of Scherk-Schwarz supersymmetry breaking (SSSB), possesses remarkably good fine tuning given present LHC limits. Here we construct a version with precision $SU(2)_{rm L} times U(1)_{rm Y} $ unification: $sin^2 theta_W(M_Z) simeq 0.231$ is predicted to $pm 2%$ by unifying $SU(2)_{rm L} times U(1)_{rm Y} $ into a 5D $SU(3)_{rm EW}$ theory at a Kaluza-Klein scale of $1/R_5 sim 4.4,{rm TeV}$, where SSSB is simultaneously realised. Full unification with $SU(3)_{rm C}$ is accommodated by extending the 5D theory to a $N=4$ supersymmetric $SU(6)$ gauge theory on a 6D rectangular orbifold at $1/R_6 sim 40 ,{rm TeV}$. TeV-scale states beyond the SM include exotic charged fermions implied by $SU(3)_{rm EW}$ with masses lighter than $sim 1.2,{rm TeV}$, and squarks in the mass range $1.4,{rm TeV} - 2.3,{rm TeV}$, providing distinct signatures and discovery opportunities for LHC run II.



rate research

Read More

227 - Xerxes Tata 2020
The realization that supersymmetry (SUSY), if softly broken at the weak scale, can stabilize the Higgs sector led many authors to explore the role it may play in particle physics. It was widely anticipated that superpartners would reveal themselves once the TeV scale was probed in high energy collisions. Experiments at the LHC have not yet revealed any sign for direct production of superpartners, or for any other physics beyond the Standard Model. This has led to some authors to question whether weak scale SUSY has a role to play in stabilizing the Higgs sector. We show that SUSY models with just the minimal particle content may well be consistent with data and simultaneously serve to stabilize the Higgs sector, if model parameters generally regarded as independent turn out to be appropriately correlated. In our view, it would be premature to ignore this possibility, given that we do not understand the underlying mechanism of SUSY breaking. We advocate using the electroweak scale quantity, $delew$, to determine whether a given SUSY spectrum might arise from a theory with low fine-tuning, even when the parameters correlations mentioned above are present. We find that all such models contain light higgsinos and that this leads to the possibility of new strategies for searching for SUSY. We discuss phenomenological implications of these models for SUSY searches at the LHC and its luminosity and energy upgrades, as well as at future electron-positron colliders. We conclude that natural SUSY, defined as no worse than a part in 30 fine-tuning, will not escape detection at a $pp$ collider operating at 27~TeV and an integrated luminosity of 15~ab$^{-1}$, or at an electron-positron collider with a centre-of-mass energy of 600~GeV.
85 - Sibo Zheng 2019
In the context of supersymmetry, the two-loop Barr-Zee diagrams which induce CP-violating electric dipole moment of electron due to superpartners simultaneously yield CP-conserving magnetic dipole moment of muon. In this paper, we derive the coherence between the electric and magnetic dipole moments at two-loop level due to stops, charginos or neutralinos-charginos. We also use the coherence to constrain superpartner masses and their CP-violating phases, in the light of recent ACME limit on the electric dipole moment of electron and future experiments about magnetic dipole moment of muon such as Fermilab E989 experiment.
Gluinos that result in classic large missing transverse momentum signatures at the LHC have been excluded by 2011 searches if they are lighter than around 800 GeV. This adds to the tension between experiment and supersymmetric solutions of the naturalness problem, since the gluino is required to be light if the electroweak scale is to be natural. Here, we examine natural scenarios where supersymmetry is present, but was hidden from 2011 searches due to violation of R-parity and the absence of a large missing transverse momentum signature. Naturalness suggests that third generation states should dominate gluino decays and we argue that this leads to a generic signature in the form of same-sign, flavour-ambivalent leptons, without large missing transverse momentum. As a result, searches in this channel are able to cover a broad range of scenarios with some generality and one should seek gluinos that decay in this way with masses below a TeV. We encourage the LHC experiments to tailor a search for supersymmetry in this form. We consider a specific case that is good at hiding: baryon number violation, and estimate that the most constraining existing search from 2011 data implies a lower bound on the gluino mass of 550 GeV.
Recent clarifications of naturalness in supersymmetry robustly require the presence of four light higgsinos with mass ~100-300 GeV while gluinos and (top)-squarks may lie in the multi-TeV range, possibly out of LHC reach. We project the high luminosity (300-3000 fb^{-1}) reach of LHC14 via gluino cascade decays and via same-sign diboson production. We compare these to the reach for neutralino pair production tz_1tz_2 followed by tz_2totz_1ell^+ell^- decay to soft dileptons which recoil against a hard jet. It appears that 3000 fb^{-1} is just about sufficient integrated luminosity to probe naturalness with up to 3% fine-tuning at the 5-sigma level, thus either discovering natural supersymmetry or else ruling it out.
We demonstrate that natural supersymmetry is readily realized in the framework of SU(4)_c times SU(2)_L times SU(2)_R with non-universal gaugino masses. Focusing on ameliorating the little hierarchy problem, we explore the parameter space of this model which yields small fine-tuning measuring parameters (natural supersymmetry) at the electroweak scale (Delta_{EW}) as well as at high scale (Delta_{HS}). It is possible to have both Delta_{EW} and Delta_{HS} less than 100 in these models, (2 % or better fine-tuning), while keeping the light CP-even (Standard Model-like) Higgs mass in the 123 GeV-127 GeV range. The light stop quark mass lies in the range 700 GeV <m_{tilde{t}_{1}}< 1500 GeV, and the range for the light stau lepton mass is 900 GeV <m_{tilde{tau}_{1}}< 1300 GeV. The first two family squarks are in the mass range 3000 GeV <m_{tilde{t}_{1}}< 4500 GeV, and for the gluino we find 2500 GeV <m_{tilde{g}_{1}}< 3500 GeV. We do not find any solution with natural supersymmetry which yields significant enhancement for Higgs production and decay in the diphoton channel.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا