Do you want to publish a course? Click here

Short GRBs at the dawn of the gravitational wave era

139   0   0.0 ( 0 )
 Added by Giancarlo Ghirlanda
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We derive the luminosity function and redshift distribution of short Gamma Ray Bursts (SGRBs) using (i) all the available observer-frame constraints (i.e. peak flux, fluence, peak energy and duration distributions) of the large population of Fermi SGRBs and (ii) the rest-frame properties of a complete sample of Swift SGRBs. We show that a steep $phi(L)propto L^{-a}$ with a>2.0 is excluded if the full set of constraints is considered. We implement a Monte Carlo Markov Chain method to derive the $phi(L)$ and $psi(z)$ functions assuming intrinsic Ep-Liso and Ep-Eiso correlations or independent distributions of intrinsic peak energy, luminosity and duration. To make our results independent from assumptions on the progenitor (NS-NS binary mergers or other channels) and from uncertainties on the star formation history, we assume a parametric form for the redshift distribution of SGRBs. We find that a relatively flat luminosity function with slope ~0.5 below a characteristic break luminosity ~3$times10^{52}$ erg/s and a redshift distribution of SGRBs peaking at z~1.5-2 satisfy all our constraints. These results hold also if no Ep-Liso and Ep-Eiso correlations are assumed. We estimate that, within ~200 Mpc (i.e. the design aLIGO range for the detection of GW produced by NS-NS merger events), 0.007-0.03 SGRBs yr$^{-1}$ should be detectable as gamma-ray events. Assuming current estimates of NS-NS merger rates and that all NS-NS mergers lead to a SGRB event, we derive a conservative estimate of the average opening angle of SGRBs: $theta_{jet}$~3-6 deg. Our luminosity function implies an average luminosity L~1.5$times 10^{52}$ erg/s, nearly two orders of magnitude higher than previous findings, which greatly enhances the chance of observing SGRB orphan afterglows. Efforts should go in the direction of finding and identifying such orphan afterglows as counterparts of GW events.



rate research

Read More

On the ground of the large number of gamma-ray bursts (GRBs) detected with cosmological redshift, we classified GRBs in seven subclasses, all with binary progenitors originating gravitational waves (GWs). Each binary is composed by combinations of carbon-oxygen cores (CO$_{rm core}$), neutron stars (NSs), black holes (BHs) and white dwarfs (WDs). The long bursts, traditionally assumed to originate from a BH with an ultra-relativistic jetted emission, not emitting GWs, have been subclassified as (I) X-ray flashes (XRFs), (II) binary-driven hypernovae (BdHNe), and (III) BH-supernovae (BH-SNe). They are framed within the induced gravitational collapse (IGC) paradigm with progenitor a CO$_{rm core}$-NS/BH binary. The supernova (SN) explosion of the CO$_{rm core}$ triggers an accretion process onto the NS/BH. If the accretion does not lead the NS to its critical mass, an XRF occurs, while when the BH is present or formed by accretion, a BdHN occurs. When the binaries are not disrupted, XRFs lead to NS-NS and BdHNe lead to NS-BH. The short bursts, originating in NS-NS, are subclassified as (IV) short gamma-ray flashes (S-GRFs) and (V) short GRBs (S-GRBs), the latter when a BH is formed. There are (VI) ultra-short GRBs (U-GRBs) and (VII) gamma-ray flashes (GRFs), respectively formed in NS-BH and NS-WD. We use the occurrence rate and GW emission of these subclasses to assess their detectability by Advanced LIGO-Virgo, eLISA, and resonant bars. We discuss the consequences of our results in view of the announcement of the LIGO-Virgo Collaboration of the source GW 170817 as being originated by a NS-NS.
The successive discoveries of binary merger events by Advanced LIGO-Virgo have been revealing the statistical properties of binary black hole (BBH) populations. A stochastic gravitational wave background (GWB) is a useful tool to probe the cosmological evolution of those compact mergers. In this paper, we study the upper bound on a GWB produced by BBH mergers, whose stellar progenitors dominate the reionization process at the cosmic dawn. Since early reionization by those progenitors yields a high optical depth of the universe inconsistent with the {it Planck} measurements, the cumulative mass density is limited to $rho_star lesssim 10^7~M_odot~{rm Mpc}^{-3}$. Even with this upper bound, the amplitude of a GWB owing to the high-$z$ BBH mergers is expected to be as high as $Omega_{rm gw}simeq 1.48_{-1.27}^{+1.80}times 10^{-9}$ at $fsimeq 25$ Hz, while their merger rate at the present-day is consistent or lower than the observed GW event rate. This level of GWB is detectable at the design sensitivity of Advanced LIGO-Virgo and would indicate a major contribution of the high-$z$ BBH population to the local GW events. The spectral index is expected to be substantially flatter than the canonical value of $simeq 2/3$ generically produced by lower-redshift and less massive BBHs. Moreover, if their mass function is more top-heavy than in the local universe, the GWB spectrum is even more skewed toward lower frequencies, which would allow us to extract information on the mass function of merging BBHs at high redshifts.
The focus of this Chapter is on describing the prospective sources of the gravitational wave universe accessible to present and future observations, from kHz, to mHz down to nano-Hz frequencies. The multi-frequency gravitational wave universe gives a deep view into the cosmos, inaccessible otherwise. It has as main actors core-collapsing massive stars, neutron stars, coalescing compact object binaries of different flavours and stellar origin, coalescing massive black hole binaries, extreme mass ratio inspirals, and possibly the very early universe itself. Here, we highlight the science aims and describe the gravitational wave signals expected from the sources and the information gathered in it. We show that the observation of gravitational wave sources will play a transformative role in our understanding of the processes ruling the formation and evolution of stars and black holes, galaxy clustering and evolution, the nature of the strong forces in neutron star interiors, and the most mysterious interaction of Nature: gravity. The discovery, by the LIGO Scientific Collaboration and Virgo Collaboration, of the first source of gravitational waves from the cosmos GW150914, and the superb technological achievement of the space mission LISA Pathfinder herald the beginning of the new phase of exploration of the universe.
146 - J. Clark , H. Evans , S. Fairhurst 2014
We present a detailed evaluation of the expected rate of joint gravitational-wave and short gamma-ray burst (GRB) observations over the coming years. We begin by evaluating the improvement in distance sensitivity of the gravitational wave search that arises from using the GRB observation to restrict the time and sky location of the source. We argue that this gives a 25% increase in sensitivity when compared to an all-sky, all-time search, corresponding to more than doubling the number of detectable gravitational wave signals associated with GRBs. Using this, we present the expected rate of joint observations with the advanced LIGO and Virgo instruments, taking into account the expected evolution of the gravitational wave detector network. We show that in the early advanced gravitational wave detector observing runs, from 2015-2017, there is only a small chance of a joint observation. However, as the detectors approach their design sensitivities, there is a good chance of joint observations provided wide field GRB satellites, such as Fermi and the Interplanetary Network, continue operation. The rate will also depend critically upon the nature of the progenitor, with neutron star--black hole systems observable to greater distances than double neutron star systems. The relative rate of binary mergers and GRBs will depend upon the jet opening angle of GRBs. Consequently, joint observations, as well as accurate measurement of both the GRB rate and binary merger rates, will allow for an improved estimation of the opening angle of GRBs.
The era of gravitational-wave astronomy began on 14 September 2015, when the LIGO Scientific Collaboration detected the merger of two $sim 30 M_odot$ black holes at a distance of $sim 400$ Mpc. This event has facilitated qualitatively new tests of gravitational theories, and has also produced exciting information about the astrophysical origin of black hole binaries. In this review we discuss the implications of this event for gravitational physics and astrophysics, as well as the expectations for future detections. In brief: (1) because the spins of the black holes could not be measured accurately and because mergers are not well calculated for modified theories of gravity, the current analysis of GW150914 does not place strong constraints on gravity variants that change only the generation of gravitational waves, but (2) it does strongly constrain alterations of the propagation of gravitational waves and alternatives to black holes. Finally, (3) many astrophysical models for the origin of heavy black hole binaries such as the GW150914 system are in play, but a reasonably robust conclusion that was reached even prior to the detection is that the environment of such systems needs to have a relatively low abundance of elements heavier than helium.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا