Do you want to publish a course? Click here

ALMA spectroscopic survey in the Hubble Ultra Deep Field: Continuum number counts, resolved 1.2-mm extragalactic background, and properties of the faintest dusty star forming galaxies

263   0   0.0 ( 0 )
 Added by Manuel Aravena
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present an analysis of a deep (1$sigma$=13 $mu$Jy) cosmological 1.2-mm continuum map based on ASPECS, the ALMA Spectroscopic Survey in the Hubble Ultra Deep Field. In the 1 arcmin$^2$ covered by ASPECS we detect nine sources at $>3.5sigma$ significance at 1.2-mm. Our ALMA--selected sample has a median redshift of $z=1.6pm0.4$, with only one galaxy detected at z$>$2 within the survey area. This value is significantly lower than that found in millimeter samples selected at a higher flux density cut-off and similar frequencies. Most galaxies have specific star formation rates similar to that of main sequence galaxies at the same epoch, and we find median values of stellar mass and star formation rates of $4.0times10^{10} M_odot$ and $sim40~M_odot$ yr$^{-1}$, respectively. Using the dust emission as a tracer for the ISM mass, we derive depletion times that are typically longer than 300 Myr, and we find molecular gas fractions ranging from $sim$0.1 to 1.0. As noted by previous studies, these values are lower than using CO--based ISM estimates by a factor $sim$2. The 1,mm number counts (corrected for fidelity and completeness) are in agreement with previous studies that were typically restricted to brighter sources. With our individual detections only, we recover $55pm4%$ of the extragalactic background light (EBL) at 1.2 mm measured by the Planck satellite, and we recover $80pm7%$ of this EBL if we include the bright end of the number counts and additional detections from stacking. The stacked contribution is dominated by galaxies at $zsim1-2$, with stellar masses of (1-3)$times$10$^{10}$ M$_odot$. For the first time, we are able to characterize the population of galaxies that dominate the EBL at 1.2 mm.



rate research

Read More

We present the rationale for and the observational description of ASPECS: The ALMA SPECtroscopic Survey in the Hubble Ultra-Deep Field (UDF), the cosmological deep field that has the deepest multi-wavelength data available. Our overarching goal is to obtain an unbiased census of molecular gas and dust continuum emission in high-redshift (z$>$0.5) galaxies. The $sim$1$$ region covered within the UDF was chosen to overlap with the deepest available imaging from HST. Our ALMA observations consist of full frequency scans in band 3 (84-115 GHz) and band 6 (212-272 GHz) at approximately uniform line sensitivity ($L_{rm CO}sim$2$times$10$^{9}$ K km/s pc$^2$), and continuum noise levels of 3.8 $mu$Jy beam$^{-1}$ and 12.7 $mu$Jy beam$^{-1}$, respectively. The molecular surveys cover the different rotational transitions of the CO molecule, leading to essentially full redshift coverage. The [CII] emission line is also covered at redshifts $6.0<z<8.0$. We present a customized algorithm to identify line candidates in the molecular line scans, and quantify our ability to recover artificial sources from our data. Based on whether multiple CO lines are detected, and whether optical spectroscopic redshifts as well as optical counterparts exist, we constrain the most likely line identification. We report 10 (11) CO line candidates in the 3mm (1mm) band, and our statistical analysis shows that $<$4 of these (in each band) are likely spurious. Less than 1/3 of the total CO flux in the low-J CO line candidates are from sources that are not associated with an optical/NIR counterpart. We also present continuum maps of both the band 3 and band 6 observations. The data presented here form the basis of a number of dedicated studies that are presented in subsequent papers.
Non-resonant FeII* 2365, 2396, 2612, 2626 emission can potentially trace galactic winds in emission and provide useful constraints to wind models. From the 3x3 mosaic of the Hubble Ultra Deep Field (UDF) obtained with the VLT/MUSE integral field spectrograph, we identify a statistical sample of 40 FeII* emitters and 50 MgII 2796, 2803 emitters from a sample of 271 [OII] 3726, 3729 emitters with reliable redshifts from z = 0.85 - 1.5 down to 2E-18 (3 sigma) ergs/s/cm^2 (for [OII]), covering the stellar mass range 10^8 - 10^11 Msun. The FeII* and MgII emitters follow the galaxy main sequence, but with a clear dichotomy. Galaxies with masses below 10^9 Msun and star formation rates (SFRs) of <1 Msun/year have MgII emission without accompanying FeII* emission, whereas galaxies with masses above 10^10 Msun and SFRs >10 Msun/year have FeII* emission without accompanying MgII emission. Between these two regimes, galaxies have both MgII and FeII* emission, typically with MgII P-Cygni profiles. Indeed, the MgII profile shows a progression along the main sequence from pure emission to P-Cygni profiles to strong absorption, due to resonant trapping. Combining the deep MUSE data with HST ancillary information, we find that galaxies with pure MgII emission profiles have lower star formation rate surface densities than those with either MgII P-Cygni profiles or FeII* emission. These spectral signatures produced through continuum scattering and fluorescence, MgII P-Cygni profiles and FeII* emission, are better candidates for tracing galactic outflows than pure MgII emission, which may originate from HII regions. We compare the absorption and emission rest-frame equivalent widths for pairs of FeII transitions to predictions from outflow models and find that the observations consistently have less total re-emission than absorption, suggesting either dust extinction or non-isotropic outflow geometries.
We study the molecular gas properties of high-$z$ galaxies observed in the ALMA Spectroscopic Survey (ASPECS) that targets a $sim1$ arcmin$^2$ region in the Hubble Ultra Deep Field (UDF), a blind survey of CO emission (tracing molecular gas) in the 3mm and 1mm bands. Of a total of 1302 galaxies in the field, 56 have spectroscopic redshifts and correspondingly well-defined physical properties. Among these, 11 have infrared luminosities $L_{rm{}IR}>10^{11}$ L$_odot$, i.e. a detection in CO emission was expected. Out these, 7 are detected at various significance in CO, and 4 are undetected in CO emission. In the CO-detected sources, we find CO excitation conditions that are lower than typically found in starburst/SMG/QSO environments. We use the CO luminosities (including limits for non-detections) to derive molecular gas masses. We discuss our findings in context of previous molecular gas observations at high redshift (star-formation law, gas depletion times, gas fractions): The CO-detected galaxies in the UDF tend to reside on the low-$L_{rm{}IR}$ envelope of the scatter in the $L_{rm{}IR}-L_{rm{}CO}$ relation, but exceptions exist. For the CO-detected sources, we find an average depletion time of $sim$ 1 Gyr, with significant scatter. The average molecular-to-stellar mass ratio ($M_{rm{}H2}$/$M_*$) is consistent with earlier measurements of main sequence galaxies at these redshifts, and again shows large variations among sources. In some cases, we also measure dust continuum emission. On average, the dust-based estimates of the molecular gas are a factor $sim$2-5$times$ smaller than those based on CO. Accounting for detections as well as non-detections, we find large diversity in the molecular gas properties of the high-redshift galaxies covered by ASPECS.
We carry out a blind search of 3mm continuum sources using the ALMA Science Archive to derive the first galaxy number counts at this wavelength. The analyzed data are drawn from observations towards three extragalactic legacy fields: COSMOS, CDF-S, and the UDS comprising more than 130 individual ALMA Band 3 pointings and an effective survey area of ~200 sq. arcmin with a continuum sensitivity that allows for the direct detection of unlensed Dusty Star-Forming Galaxies (DSFGs) dust emission beyond the epoch of reionization. We present a catalog of 16 sources detected at >5sigma with flux densities S_3mm = 60 - 600 uJy from which number counts are derived. These number counts are then used to place constraints on the volume density of DSFGs with an empirical backward evolution model. Our measured 3mm number counts indicate that the contribution of DSFGs to the cosmic star formation rate density at z >~ 4 is non-negligible. This is contrary to the generally adopted assumption of a sharply decreasing contribution of obscured galaxies at z > 4 as inferred by optical and near-infrared surveys. This work demonstrates the power of ALMA 3mm observations which can reach outstanding continuum sensitivities during typical spectral line science programs. Further constraints on 3mm-selected galaxies will be essential to refine models of galaxy formation and evolution as well as models of early Universe dust production mechanisms.
The physical origin of the near-ultraviolet MgII emission remains an under-explored domain, contrary to more typical emission lines detected in the spectra of star-forming galaxies. We explore the nebular and physical properties for a sample of 381 galaxies between 0.70 < z < 2.34 drawn from the MUSE Hubble Ultra Deep Survey. The spectra of these galaxies show a wide variety of profiles of the MgII 2796,2803 resonant doublet, from absorption to emission. We present a study on the main drivers for the detection of MgII emission in galaxy spectra. By exploiting photoionization models we verified that the emission-line ratios observed in galaxies with MgII in emission are consistent with nebular emission from HII regions. From a simultaneous analysis of MUSE spectra and ancillary HST information via spectral energy distribution (SED) fitting, we find that galaxies with MgII in emission have lower stellar masses, smaller sizes, bluer spectral slopes and lower optical depth than those with absorption. This leads us to suggest that MgII emission is a potential tracer of physical conditions not merely related to those of the ionized gas. We show that these differences in MgII emission/absorption can be explained in terms of a higher dust and neutral gas content in the interstellar medium (ISM) of galaxies showing MgII in absorption, confirming the extreme sensitivity of MgII to the presence of the neutral ISM. We conclude with an analogy between the MgII doublet and the Ly-alpha line, due to their resonant nature. Further investigations with current and future facilities, including JWST, are promising as the detection of MgII emission and its potential connection with Ly-alpha could provide new insights on the ISM content in the early Universe.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا