Restoring Interlayer Josephson Coupling in La_{1.885}Ba_{0.115}CuO_4 by Charge Transfer Melting of Stripe Order


Abstract in English

We show that disruption of charge-density-wave (stripe) order by charge transfer excitation, enhances the superconducting phase rigidity in La_{1.885}Ba_{0.115}CuO_4 (LBCO). Time-Resolved Resonant Soft X-Ray Diffraction demonstrates that charge order melting is prompt following near-infrared photoexcitation whereas the crystal structure remains intact for moderate fluences. THz time-domain spectroscopy reveals that, for the first 2 ps following photoexcitation, a new Josephson Plasma Resonance edge, at higher frequency with respect to the equilibrium edge, is induced indicating enhanced superconducting interlayer coupling. The fluence dependence of the charge-order melting and the enhanced superconducting interlayer coupling are correlated with a saturation limit of about 0.5 mJ/cm2. Using a combination of x-ray and optical spectroscopies we establish a hierarchy of timescales between enhanced superconductivity, melting of charge order and rearrangement of the crystal structure.

Download