Braking indices of pulsars obtained in the presence of an effective force


Abstract in English

Braking indices of pulsars present a scientific challenge as their theoretical calculation is still an open problem. In this paper we report results of a study regarding such calculation which adapts the canonical model (which admits that pulsars are rotating magnetic dipoles) basically by introducing a compensating component in the energy conservation equation of the system. This component would correspond to an effective force that varies with the first power of the tangential velocity of the pulsars crust. We test the proposed model using data available and predict braking indices values for different stars. We comment on the high braking index recently measured of the pulsar J1640-4631.

Download